amortized analysis

CIS 315
stronger than average case

• with average case there is probability involved
• amortized analysis looks at a sequence of operations
• bound is on total worst case time
• which provides a guarantee on the average time per operation
• total-time/number-of-operations
simple example – array expansion

- start with an array of (say) \(k=16 \) locations
- when it fills, allocate array of size \(2k \)
- copy everything from array of size \(k \) into that of size \(2k \) (and maybe initialize the unused portion)
- this does not have to be done very often
- a total of \(n \) array insertions takes \(O(n) \) total time, even for large \(n \)
- we say \(O(1) \) amortized time per insertion
types of amortized analysis

• aggregate
 count the total time, divide by the number of operations

• accounting
 assign a cost per operation, money goes into bank to pay for other operations, bank account must stay positive

• potential
 assign a money function to the data structure, cost of an operation is the actual time plus change in potential (which can increase or decrease)
array example

• consider the n insertions into array, count write steps and copy steps

• **aggregate**: total time is $2n$ (maybe $3n$?)

• **accounting**: insert 3, expand 0

• **potential function**: (# filled spaces) – (# empty spaces)
aggregate case

3 to insert? where does the money go?

in array of size 2^k
- 1 to insert in location i \((2^{k-1}+1 \leq i \leq 2^k)\)
- 1 to copy location i to location i in array of size 2^{k+1}
- 1 to copy location $i-2^{k-1}$ to location $i-2^{k-1}$ in array of size 2^{k+1}

that location never has to pay again – locations in future expansions will pay for the copy
notation

- c is the actual cost of a step
- \hat{c} is the amortized cost of a step
- S is a data structure, $\varphi(S)$ is the potential
- If S is the data structure before a step, and S' is the data structure after a step, the change in potential is $\varphi(S') - \varphi(S)$
- Amortized cost \hat{c} is defined to be the actual cost plus change in potential
- **Definition:** $\hat{c} = c + \varphi(S') - \varphi(S)$
potential applied to array expansion

let the array A have f filled locations and e empty locations potential prior to an operation: \(\phi(A) = f - e \)

insert:
in A': f+1 filled locations and e-1 empty locations
new potential: \(\phi(A') = (f+1) - (e-1) \)
actual cost: \(c=1 \) (for the write)

amortized cost: \(\hat{c} = c + \phi(A') - \phi(A) = 1 + [(f+1) - (e-1)] - [f-e] = 3 \)

expand:
initially in A, e=0
in A': size is doubled, f full locations, f empty locations
new potential: \(\phi(A') = f - f = 0 \)
actual cost: \(c=f \) (copy steps)

amortized cost: \(\hat{c} = c + \phi(A') - \phi(A) = f + [f - f] - [f-0] = 0 \)
(potential has decreased to pay for the copying)
general idea for potential

notation:
- \(c_i \) is actual cost of step \(i \)
- \(\hat{c}_i \) is amortized cost of step \(i \)
- \(S_i \) is data structure at step \(i \)
- \(\hat{c}_i = c_i + \varphi(S_i) - \varphi(S_{i-1}) \)

add up steps:
- \(\hat{c}_1 = c_1 + \varphi(S_1) - \varphi(S_0) \)
- \(\hat{c}_2 = c_2 + \varphi(S_2) - \varphi(S_1) \)
- \(\hat{c}_3 = c_3 + \varphi(S_3) - \varphi(S_2) \)
- ...
- \(\hat{c}_n = c_n + \varphi(S_n) - \varphi(S_{n-1}) \)

\[\sum \hat{c}_i = \sum c_i + \varphi(S_n) - \varphi(S_0) \]

moral of story: sum of amortized costs is upper bound on sum of actual costs, so long as \(\varphi(S_n) \geq \varphi(S_0) \)
stimulate queue with 2 stacks

Q = stack S1, S1

enqueue(x):
 S1.push(x)

dequeue:
 if S2 empty
 while S1 not empty
 S2.push(S1.pop)
 return S2.pop

aggregate method
look at the life cycle of any x,
at most 4 push/pops each

accounting method
enqueue $4
dequeue $0

potential: $\varphi(Q) = 3 \cdot \text{size}(S1) - \text{size}(S2)$
CLAIM: any series of enqueue and dequeue operations, n of which are enqueues, takes $\Theta(n)$ time (push or pop operations).

accounting method: the 4 charge for an enqueue pays for the initial push, then perhaps at some later point, the pop from S1, the push onto S2, and a pop from S2.

potential method:
(enqueue) Suppose initially S1 has i items and S2 has j items. After the enqueue, S1 has i+1 and S2 has j items. The actual cost was 1 (push). The actual cost plus potential change is

$$1 + [(3(i+1)+j)] - [(3i+j)] = 1 + 3i + 3 + j - 3i - j = 4$$
potential method:
(dequeue)

Case j>0: this causes a pop from S2, which now has size j-1
new Q' potential $\phi(Q')=3i+(j-1)$
actual cost: $c=1$ (for the pop)
amortized cost: $\hat{c} = c + \phi(Q')-\phi(Q) = 1+[3i+(j-1)]-[3i+j]=0$

Case j=0: i items popped from S1, then pushed onto S2, then one item popped from S2
new Q' potential $\phi(Q')=3 \cdot 0+(i-1)$
actual cost: $c = i + i + 1 = 2i+1$
amortized cost: $\hat{c} = c + \phi(Q')-\phi(Q) = 2i+1 + [3 \cdot 0+(i-1)]-[3i+0] = 0$
a compendium of potentials

array expansion:
\[\varphi(A) = f - e \]
f=# filled locations
e=# empty locations

splay trees:
\[\varphi(T) = \sum_{v \in T} \log \text{size}(v) \]
where \(\text{size}(v) \) is the number of nodes in \(T \) of the subtree rooted at \(v \)

binary counter (p 454):
\[\varphi(A) = \# \text{ of 1’s in } A \]

queue with 2 stacks:
\[\varphi(Q) = 2 \times \text{size}(S1) + \text{size}(S2) \]

union find by rank with path compression:
something horrible involving inverse Ackermann (see p 577)

Fibonacci heap:
\[\varphi(H) = e(2m + t) \]
m=# marked nodes
t=# trees in root list
e=constant