\[n[i] = \min \{ n[j+1] + d[i,j] \mid i \leq j \leq n \} \]

Algorithm Steps:

1. Try all possible \(i \) and \(j \) on the 1st line.
2. Recursively find the minimum cost for \(i \) and \(j+1 \).
3. Save the minimum cost found.
4. Break if the current line is full or if there are no more words.

Example:
- \(w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9, w_{10} \)
- \(b, 4, 4, 6, 7, 9, 9, 11, 12 \)
merge sort

\[
t \text{time } M(n) = \begin{cases}
\mathcal{O}(1) & \text{if } n = 1 \\
2M(n/2) + \mathcal{O}(n) & \text{if } n > 1
\end{cases}
\]

\[M(n) = 2M(n/2) + \mathcal{O}(n)\]
Multiply 2 n-bit integers

\[x, y \]
\[A \]
\[x_{n-1}, x_{n-2}, \ldots, x_1, x_0 \]
\[y_{n-1}, y_0 \]

\[0(n^2) \]
Karatsuba - Ofman

\[
x = a \cdot 2^{n/2} + b
\]
\[
y = c \cdot 2^{n/2} + d
\]

Goal: \[x \cdot y = ac \cdot 2^n + (ad + bc) \cdot 2^{n/2} + bd\]

\[
m_1 = ac
\]
\[
m_2 = bd
\]
\[
m_3 = (a+b)(c+d) = ac + bc + ad + bd
\]
\[
m_3 - m_1 - m_2 = ad + bc
\]

\[M(n) = 3M(n/2) + O(n)\]
\[= O(n \log_2 3) < O(n^{1.59})\]