Quality Assurance I

Project presentations
QA Basics
Need for a plan

Project 1 Presentations

• Project 1 presentations
 – Will be limited to 8 minutes apiece (practice your timing)
 – Make sure you can connect to the projector (in advance)
 – Test your demo on the computer you plan to use

• Not enough time for all the teams to present during Friday class
 – Random one or two teams will present Monday
Project Submission

- All Project 1 materials are due at class time on Friday
- Make sure that **all project deliverables** are available on your Assembla pages with links from the Home page
 - Include source code as a downloadable package
 - Include any executable and test cases
 - Include presentation slides
 - Provide explicit instructions how to download, install and run your software!

Steps to Academic Integrity

- Reminder: unattributed use of material you did not produce is plagiarism
- Basic steps to ensure safety
 - Any work from another source must contain a reference to that source
 - It must be clear what is and is not original work
 - Any submission must be “substantially” original work (i.e., think 90%)
- Areas to be careful
 - OK to use prior work as a *model* but not copy the work itself
 - OK to include non-original code if a) it is clearly marked and b) most is by your own effort
QUALITY ASSURANCE BASICS

Purpose of SE

• The purpose of Software Engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
 – Intellectual control: able to make rational development decisions based on an understanding of the downstream effects of those choices.
 – Managerial control means we likewise control development resources (budget, schedule, personnel).
Product Development Cycle

Goal is to keep system capabilities and business goals in synch!

Requires Feedback-Control

- Uncertainty means we cannot get everything under control then run on autopilot
- Rather control requires continuous feedback
 1. Define ideal
 2. Make a step
 3. Measure deviation from ideal
 4. Correct direction or redefine ideal and go back to 2

Role of QA

- Requires Feedback
- Control
Basic QA Questions

• For this to work, must define notions like “ideal” and “measure” for products and processes
 – What defines the “ideal?”
 – What should we measure?
 – How can we measure it?
 – When should we measure it?
 – Who should do the work?

Example: System Requirements

• What happens if we get requirements wrong?
• What qualities should a “good” requirements specification have (ideally)?
• How should we evaluate the qualities of the requirements specification?
• What is the right time for these activities?
• Which roles should be responsible?
QA Questions

• Properties of a good requirements spec
 – Relevant: capture what the stakeholders want?
 – Complete: capture all the stakeholder requirements (functional and quality)?
 – Consistent: not inconsistent with one another?
 – Unambiguous: avoid multiple interpretations?
 – Precise: clearly distinguish acceptable from unacceptable implementations?
 – Verifiable: can it be tested?
• How could we evaluate these properties?
 – What could we actually measure?
 – Hard problem

Example: System Requirements

• What happens if we get requirements wrong?
• Ideal: which qualities should a “good” requirements specification have?
• How should we evaluate the qualities of the requirements specification?
• When is the right time for these activities?
• Which roles should be responsible?
Increase in Software Cost-to-fix vs. Phase (1976) *

* Barry Boehm - A View of 20th and 21st Century Software Engineering

Quality is Cumulative

- Are the requirements valid?
- Complete? Consistent? Implementable?
- Testable?
- Does the design satisfy requirements?
- Are all functional capabilities included?
- Are qualities addressed (performance, maintainability, usability, etc.)?
- Do the modules work together to implement all the functionality?
- Are likely changes encapsulated?
- Is every module well defined?
- Implement the required functionality?
- Race conditions? Memory leaks? Buffer overflow?
We need a plan!

• QA activities are
 – Critical to control (and project success)
 – Part of every phase of the project
 – Time consuming, labor intensive and expensive
 • NIST Study: ~80% of development costs are consumed by software developers identifying and correcting defects
 – Cannot do everything, need to choose
• Suggests need to plan QA activities to:
 – Detect issues as early as possible
 – Target highest priority/risk issues for project
 – Support cost-effective use of resources

Product Development Cycle

Goal is to keep system capabilities and business goals in synch!
QA Plan

• Purpose: synchronize QA activities with project deliverables such that:
 – Artifacts satisfy quality goals
 – Delivered code is consistent with stakeholder needs
• The plan should answer the question “How will the project will meet its quality goals?”
 – The overall QA objectives, strategy, and methodologies
 – The kinds of QA activities that should occur
 – Roles that will carry out the activities
 – When the activities should occur

Example QA Plan

• See example provided with Assembla pages
1. Purpose
2. Methods
 1. Prototypes
 2. Reviews
 3. Testing, etc.
3. Schedule and Resources
4. Measures: metrics collected
5. Acceptance criteria
 1. Review issues
 2. Code defects
 3. Quality variation (e.g., performance variation), etc.
6. Responsibilities
Validation and Verification

- **Validation**: activities to answer the question – “Are we building a system the customer wants?”
 - Familiar activity: customer review of prototype
- **Verification**: activities to answer the question – “Are we building the system consistent with its specifications?”
 - Most familiar verification activity is functional testing
- Both are processes, both have many variations
V&V Methods

- Most applied V&V uses one of two methods
- Review: use of human skills to find defects
 - Pro: applies human understanding, skills. Good for detecting logical errors, problem misunderstanding
 - Con: poor at detecting inconsistent assumptions, details of consistency, completeness. Labor intensive
- Testing: use of machine execution
 - Pro: can be automated, repeated. Good at detecting detail errors, checking assumptions
 - Con: cannot establish correctness or quality
- Will discuss methods for each of these in coming weeks

Summary

- Quality Assurance activities provide the feedback in controlling development
- Effective QA requires that we
 - Can define what we want (the ideal)
 - Can evaluate work products against the ideal
- QA activities consume substantial resources, require planning
 ...But, done well, pay for themselves