Lecture 11/02/16

Lecturer: Xiaodi Wu

Reading: Chapter 3.2
Recap

▶ We have defined Binary Search Tree (BST).
Binary Search Tree

Recap

- We have defined Binary Search Tree (BST).
- Insertion and Removal operation on the BST. (Required in Lab 2)
Recap

- We have defined Binary Search Tree (BST).
- Insertion and Removal operation on the BST. (Required in Lab 2)
- Complexity of each operation is $O(h)$.
Binary Search Trees
Problems with BST

Complexity $O(h)$

h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Candidate solution: AVL tree.
Problems with BST

Complexity $O(h)$
h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Is there a way to force h to be $O(\log(n))$ while still having efficient insertion and removal operation?
Problems with BST

Complexity $O(h)$

h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Is there a way to force h to be $O(\log(n))$ while still having efficient insertion and removal operation?

Candidate solution: AVL tree.
AVL tree

Height-balance Property

For every internal node v of T, the heights of the children of v can differ by at most 1.
Height-balance Property
For every internal node \(v \) of \(T \), the heights of the children of \(v \) can differ by at most 1.

AVL Tree
Any binary search tree with the **height-balance property** is called an AVL tree, named after the initials of the inventors.
AVL tree

Height-balance Property
For every internal node v of T, the heights of the children of v can differ by at most 1.

AVL Tree
Any binary search tree with the **height-balance property** is called an AVL tree, named after the initials of the inventors.
Remember the goal is to hope $h = O(\log(n))$.
AVL trees
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2?
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height h of an AVL tree of n nodes

- Basically, find the relationship between h and n.
- Let $n(h)$ be the minimum \# nodes in a tree of height h.
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
- Let \(n(h) \) be the minimum \# nodes in a tree of height \(h \).
- It suffices to show that \(n(h) = 2^{\Omega(h)} \).
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
- Let \(n(h) \) be the minimum \(\# \) nodes in a tree of height \(h \).
- It suffices to show that \(n(h) = 2^{\Omega(h)} \).
- \(n \geq 2^{ch} \Rightarrow h \leq \frac{1}{c} \log(n) \in O(\log(n)) \).
Proof: \(h = O(\log(n)) \)

Theorem

The height of an AVL tree storing \(n \) items is \(O(\log(n)) \).

Proof.

- \(n(1) = 1, \ n(2) = 2. \)
Proof: $h = O(\log(n))$

Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1$, $n(2) = 2$.
- How about $n(3)$? What is the worst case?
Proof: $h = O(\log(n))$

Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1$, $n(2) = 2$.
- How about $n(3)$? What is the worst case?
- $n(3) = 1 + n(1) + n(2)!$
Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1$, $n(2) = 2$.
- How about $n(3)$? What is the worst case?
- $n(3) = 1 + n(1) + n(2)!$
- In general,

$$n(h) = 1 + n(h - 1) + n(h - 2).$$
Proof: $h = O(\log(n))$

Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1$, $n(2) = 2$.
- How about $n(3)$? What is the worst case?
- $n(3) = 1 + n(1) + n(2)!$
- In general,

\[
 n(h) = 1 + n(h-1) + n(h-2).
\]

- $n(h)$ is a strictly increasing function of h. Thus

\[
 n(h) > 2 \times n(h-2).
\]
Proof: $h = O(\log(n))$, cont’d

- In general, for any i such that $h - 2i \geq 1$, we have

\[n(h) > 2^i \times n(h - 2i). \]
Proof: $h = O(\log(n))$, cont’d

- In general, for any i such that $h - 2i \geq 1$, we have
 \[n(h) > 2^i \times n(h - 2i). \]

- One can choose $i = \lceil h/2 \rceil - 1$. Thus $n(h - 2i)$ could be $n(1)$ or $n(2)$. We have,
 \[n(h) > 2^{\lceil h/2 \rceil - 1} n(1) \in 2^{\Omega(h)}. \]
Proof: $h = O(\log(n))$, cont’d

- In general, for any i such that $h - 2i \geq 1$, we have

 $$n(h) > 2^i \times n(h - 2i).$$

- One can choose $i = \lceil h/2 \rceil - 1$. Thus $n(h - 2i)$ could be $n(1)$ or $n(2)$. We have,

 $$n(h) > 2^{\lceil h/2 \rceil - 1} n(1) \in 2^{\Omega(h)}.$$

- Precisely, we could have

 $$h < 2 \log(n) + 2.$$
AVL tree: Update

Updates like BST
Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST

Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST
Except, we might break the height-balance property. Need additional effort to re-balance it!