Lecture 10/12/16

Lecturer: Xiaodi Wu

Reading: Chapter 2.2, 2.3
Vectors & Lists

Insertion and removal in the middle

- How to refer to an item in the middle of S? We already know how to operate at the top (stack), front, rear (queue).
Insertion and removal in the middle

- How to refer to an item in the middle of S? We already know how to operate at the top (stack), front, rear (queue).

- **Rank(e):** \# of elements that precede e in S (start with rank 0). Similar to an array index. Different in the sense that it does not necessarily point to a physical location.
Insertion and removal in the middle

- How to refer to an item in the middle of S? We already know how to operate at the top (stack), front, rear (queue).

- **Rank(e):** # of elements that precede e in S (start with rank 0). Similar to an array index. Different in the sense that it does not necessarily point to a physical location.

- **Position(e):** relative "place" of e to others in S. In the object-oriented design, a position is an ADT that supports:

  ```
  element(): Return the element stored at this position.
  ```
Implementation with Array

An array of size N: $A[i]$ stores the element with rank i.

n: # elements ($n < N$).
Vector: insertion and removal based on rank

Implementation with Array

An array of size N: $A[i]$ stores the element with rank i. n: # elements ($n < N$).

Insert e at rank r

Algorithm `insertAtRank(r, e)`

for $i = n - 1, n - 2, \ldots, r$ do

$A[i + 1] \leftarrow A[i]$: make room for the new element

end for

$A[r] \leftarrow e$: insert e at the rank r

$n \leftarrow n + 1$: maintain # elements

Time: $O(n)$.
Vector: insertion and removal based on rank

Implementation with Array

An array of size N: $A[i]$ stores the element with rank i. n : # elements ($n < N$).

Insert e at rank r

Algorithm insertAtRank(r, e)

for $i = n - 1, n - 2, \ldots, r$ do

$A[i + 1] \leftarrow A[i]$: make room for the new element

end for

$A[r] \leftarrow e$: insert e at the rank r

$n \leftarrow n + 1$: maintain # elements

Time: $O(n)$.
Vector: insertion and removal based on rank

Remove e at rank r

Algorithm removeAtRank(r, e)

1. $e \leftarrow A[r]$:
2. **for** $i = r, r + 1, \ldots, n - 2$ **do**
3. **end for**
4. $n \leftarrow n - 1$: maintain # elements
5. **return** e.

Time: $O(n)$.

\[
\text{size}() \quad \text{elemAtRank}(r) \quad \text{insertAtRank}(r, e) \quad \text{removeAtRank}(r, e) \\
O(1) \quad O(1) \quad O(n) \quad O(n)
\]
Vector: insertion and removal based on rank

Remove e at rank r

Algorithm removeAtRank(r, e)

- $e \leftarrow A[r]$
- for $i = r, r + 1, \ldots, n - 2$ do
 - $A[i] \leftarrow A[i + 1]$: fill in for the removed element
- $n \leftarrow n - 1$: maintain # elements
- return e.

Time: $O(n)$.

<table>
<thead>
<tr>
<th></th>
<th>size()</th>
<th>elemAtRank(r)</th>
<th>insertAtRank(r, e)</th>
<th>removeAtRank(r, e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
List: insertion and removal based on position

More about position

A position is defined relatively, in terms of its neighbors. i.e., a position p is after position q and before position s.
List: insertion and removal based on position

More about position
A position is defined relatively, in terms of its neighbors. i.e., a position p is after position q and before position s.

A doubly linked list implementation

- **Header** and **Trailer** node.
- Other nodes: a **next** link, a **prev** link, and element stored.
List: insertion and removal based on position

Insert e after position p

Algorithm insertAfter\((p, e)\)
Create a new node v
\(v.\text{element} \leftarrow e\)
\(v.\text{prev} \leftarrow p\)
\(v.\text{next} \leftarrow p.\text{next}\)
\((p.\text{next}).\text{prev} \leftarrow v\)
\(p.\text{next} \leftarrow v\)
return v.

Remove the element at position p

Algorithm remove\((p)\)
\(t \leftarrow p.\text{element}\)
\((p.\text{prev}).\text{next} \leftarrow p.\text{next}\)
\((p.\text{next}).\text{prev} \leftarrow p.\text{prev}\)
\(p.\text{prev} \leftarrow \text{null}\)
\(p.\text{next} \leftarrow \text{null}\)
return t.
Comparison: Vector vs List

Question: Get rank for List?
Comparison: Vector vs List

Question: Get rank for List? $\Theta(n)$.

Vector better than List rank-based
Vector equal List position-based
Vector worse than List rank-based

Space: array-based $O(N)$ v.s. doubly linked list $O(n)$.
Comparison: Vector vs List

Question: Get rank for List? $\Theta(n)$.

- **Access:** Vector better than List
 Vector equal List
 rank-based
 position-based
Comparison: Vector vs List

Question: Get rank for List? $\Theta(n)$.

- **Access:** Vector better than List
 Vector equal List
 Vector equal List
- **Update:** Vector equal List
 Vector worse than List
 Vector worse than List

rank-based position-based

array-based $O(N)$ vs. doubly linked list $O(n)$.
Comparison: Vector vs List

Question: Get rank for List? $\Theta(n)$.

- **Access**: Vector better than List
 Vector equal List

- **Update**: Vector equal List
 Vector worse than List

- **Space**: array-based $O(N)$ v.s. doubly linked list $O(n)$.
Trees
Definition (Tree)

A **tree** T is a set of **nodes** storing elements in a **parent-child** relationship s.t.,

- T has a special node r, called the **root** of T.
- Each node v of T different from r has a **parent** node u.

- Two children of the same parent are **siblings**.

- Ordered if there is an order among siblings.

- A node is **external** if no child, also known as **leaves**.

- Otherwise, it is **internal**.

- An **ancestor** of a node is either the node itself or an ancestor of the parent of the node. Conversely, a **descendent**.
Trees: formal definition

Definition (Tree)
A tree \(T \) is a set of nodes storing elements in a parent-child relationship s.t.,

- \(T \) has a special node \(r \), called the root of \(T \).
- Each node \(v \) of \(T \) different from \(r \) has a parent node \(u \).
- \(u \) the parent of \(v \) \(\Rightarrow \) \(v \) the child of \(u \).
Trees: formal definition

Definition (Tree)
A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are siblings. Ordered if there is an order among siblings.
Trees: formal definition

Definition (Tree)
A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are siblings. Ordered if there is an order among siblings.
- A node is external is no child, also known as leaves. Otherwise, it is internal.
Trees: formal definition

Definition (Tree)
A **tree** T is a set of **nodes** storing elements in a **parent-child** relationship s.t.,

- T has a special node r, called the **root** of T.
- Each node v of T different from r has a **parent** node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are **siblings**. **Ordered** if there is an order among siblings.
- A node is **external** is no child, also known as **leaves**. Otherwise, it is **internal**.
- An **ancestor** of a node is either the node itself or an ancestor of the parent of the node. Conversely, a **descendant**.
Trees
The depth of v is the number of ancestors of v, excluding v itself. The root has depth 0. Or, equivalently,

- If v is the root, then depth of v is 0.
- Otherwise, the depth of $v = \text{depth of } v\text{'s parent} + 1$.
The **depth** of v is the number of ancestors of v, excluding v itself. The root has depth 0. Or, equivalently,

- If v is the root, then depth of v is 0.
- Otherwise, the depth of $v = \text{depth of } v\text{'s parent } + 1$.

The **height** of a tree T is the maximum of the depth of external nodes of T. Or, equivalently, define the height of a node v as

- 0 if v is an external node.
- $1 + \max\{\text{height of a child of } v\}$ otherwise.
Trees

The **depth** of \(v \) is the number of ancestors of \(v \), excluding \(v \) itself. The root has depth 0. Or, equivalently,

- If \(v \) is the root, then depth of \(v \) is 0.
- Otherwise, the depth of \(v \) = depth of \(v \)'s parent +1.

The **height** of a tree \(T \) is the maximum of the depth of external nodes of \(T \). Or, equivalently, define the height of a node \(v \) as

- 0 if \(v \) is an external node.
- \(1 + \max\{ \text{height of a child of } v \} \) otherwise.

The **height** of a tree is the height of the root of \(T \).
ADT: Trees

Accessor Methods

- `root()`: return the root of the tree.
- `parent(v)`: return the parent of `v`; error if `v` is the root.
- `child(v)`: return an iterator of the children of `v`.

Query & Generic Methods

- `isExternal()`, `isInternal()`, `isRoot()`;
- `size()`;
- `elements()`;
ADT: Trees

Accessor Methods

- \texttt{root()}: return the root of the tree.
- \texttt{parent(v)}: return the parent of \(v \); error if \(v \) is the root.
- \texttt{child(v)}: return an iterator of the children of \(v \).

Query & Generic Methods

- \texttt{isExternal()}, \texttt{isInternal()}, \texttt{isRoot()};
- \texttt{size()};
- \texttt{elements()};
Depth

Return the depth of v in T

Algorithm depth(T, v)

if T isRoot(v) then
 return 0;
else
 return $1 +$ depth(T, T parent(v));
end if

Complexity $O(n)$: n is # nodes in T. What is the worst case?
Return the depth of v in T

Algorithm depth(T, v)

if T.isRoot(v) then
 return 0;
else
 return $1 + \text{depth}(T, T.$parent$(v))$;
end if

Complexity

$O(n)$: n is $\#$ nodes in T. What is the worst case?
Height

Return the height of \(v \) in \(T \)

Algorithm \(\text{height}(T, v) \)

if \(T.\text{isExternal}(v) \) then
 return 0;
else
 \(h \leftarrow 0 \)
 for each \(w \in T.\text{children}(v) \) do
 \(h \leftarrow \max(h, \text{height}(T, w)) \)
 end for
 return 1 + h;
end if

Complexity

The height of \(T \) is then \(\text{height}(T, T.\text{root}) \). The complexity is \(O(n) \)!
Height

Return the height of v in T

Algorithm $\text{height}(T, v)$
if $T.\text{isExternal}(v)$ then
 return 0;
else
 $h \leftarrow 0$
 for each $w \in T.\text{children}(v)$ do
 $h \leftarrow \max(h, \text{height}(T, w))$
 end for
 return $1 + h$;
end if

Complexity
The height of T is then $\text{height}(T, T.\text{root}())$. The complexity is $O(n)!$
Theorem

Let T be a tree with n nodes, c_v the number of children of node v.

$$\sum_{v \in T} c_v = n - 1.$$
Property about Trees

Theorem
Let T be a tree with n nodes, c_v the number of children of node v.

$$\sum_{v \in T} c_v = n - 1.$$

Proof.
Counting from another perspective: each node (except the root) is counted only once from its unique parent. \square