Lecture 10/10/16

Lecturer: Xiaodi Wu

Reading: Chapter 1.5, [CLRS] Chap 17
Note on Amortized Analysis & Examples
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
▶ Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
▶ Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\#\text{all primitive ops} \leq \#\text{all money deposited} \\
= \text{amortized complexity} \times \#\text{ ops}
\]

\leq \text{due to your balance being non-negative all the time!}
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the non-negativity of your balance.

Credit Invariant

- Invariant: # of (bank) credits = # of items in the stack.
- Prove the invariant for each operation: push(), multi-pop().
The Potential Function Method

Principle

- Every primitive operation costs 1-unit energy.

Mathematics

Let Φ_i denote the potential energy right after the ith op. $\Phi_0 = 0$, $\Phi_i \geq 0$, $\forall i$. Let t_i denote the actual running time of the ith op. Then its amortized running time t'_i is defined to be $t'_i = t_i + \Phi_i - \Phi_{i-1}$.
The Potential Function Method

Principle

- Every primitive operation costs 1-unit energy.
- For each operation, energy cost + potential energy change = amortized complexity.

\[
\Phi_i = 0, \quad \Phi_i \geq 0, \quad \forall i.
\]

Let \(t_i \) denote the actual running time of the \(i \)th op. Then its amortized running time \(t'_i \) is defined to be

\[
t'_i = t_i + \Phi_i - \Phi_{i-1}
\]
The Potential Function Method

Principle

- Every primitive operation costs 1-unit energy.
- For each operation, energy cost + potential energy change = amortized complexity.
- Potential energy starts with 0 and remains **non-negative**.
The Potential Function Method

Principle

▶ Every primitive operation costs 1-unit energy.
▶ For each operation, energy cost + potential energy change = amortized complexity.
▶ Potential energy starts with 0 and remains **non-negative**.

Mathematics

▶ Let Φ_i denote the potential energy right after the ith op. $\Phi_0 = 0, \Phi_i \geq 0, \forall i$.
▶ Let t_i denote the actual running time of the ith op. Then its amortized running time t'_i is defined to be

$$t'_i = t_i + \Phi_i - \Phi_{i-1}$$
The Potential Function Method: cont’d

Correctness: total actual running time \leq total amortized running time

$$T = \sum_i t_i$$

$$= \sum_i (t_i' + \Phi_{i-1} - \Phi_i)$$

$$= \sum_i t_i' + \sum_i (\Phi_{i-1} - \Phi_i)$$

$$= T' + (\Phi_0 - \Phi_n)$$

$$\leq T'$$

where $T' = \sum_i t_i'$, the total amortized time of all operations. The second summation simplifies to $(\Phi_0 - \Phi_n)$ due to the telescoping sum.
The Potential Function Method: Example

Setup

- Set $\Phi_i =$ # of items in the stack. $\Phi_0 = 0$ and $\Phi_i \geq 0, \forall i$.

Push(): $t' = t_i + \Phi_i - \Phi_i - 1 = 1 + 1 = 2$, which is $O(1)$. The change in the potential is an increase in one, which combines with the constant-time operations of push to yield a total amortized cost of 2.

Multi-pop(): Multipop(k): $t' = t_i + \Phi_i - \Phi_i - 1 = k - k = 0$, which is $O(1)$. The potential decrease cancels the running time of multi-pop().
The Potential Function Method: Example

Setup

- Set $\Phi_i =$ # of items in the stack. $\Phi_0 = 0$ and $\Phi_i \geq 0, \forall i$.
- $\text{Push() : } t' = t_i + \Phi_i - \Phi_{i-1} = 1 + 1 = 2$, which is $O(1)$. The change in the potential is an increase in one, which combines with the constant-time operations of push to yield a total amortized cost of 2.
The Potential Function Method: Example

Setup

- Set $\Phi_i = \# \text{ of items in the stack. } \Phi_0 = 0 \text{ and } \Phi_i \geq 0, \forall i$.
- Push() : $t' = t_i + \Phi_i - \Phi_{i-1} = 1 + 1 = 2$, which is $O(1)$. The change in the potential is an increase in one, which combines with the constant-time operations of push to yield a total amortized cost of 2.

- Multi-pop(): Multipop(k): $t' = t_i + \Phi_i - \Phi_{i-1} = k + -k = 0$, which is $O(1)$. The potential decrease cancels the running time of multi-pop().