Abstract Data Type (ADT)

Stack

A **stack** is a container of objects that are inserted and removed according to the **last-in first-out (LIFO)** principle.

Stack operations:

- **push(o)**: Insert object o at the top of the stack.
- **pop()**: Remove and return the top of the stack.
- **size()**: Return the number of objects in the stack.
- **isEmpty()**: Return a Boolean indicating if the stack is empty.
- **top()**: Return the top of the stack.
Abstract Data Type (ADT)

Stack
A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO) principle.

Stack: operations

- push(o): insert object o at the top of the stack.
- pop(): remove and return the top of the stack.
Abstract Data Type (ADT)

Stack
A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO) principle.

Stack: operations

- push(o): insert object o at the top of the stack.
- pop(): remove and return the top of the stack.
- size(): return the number of objects in the stack.
- isEmpty(): return a Boolean indicating if the stack is empty.
- top(): return the top of the stack.
Definition
The nth Fibonacci number $F(n)$ is defined recursively as $F(n) = F(n-1) + F(n-2)$ for $n > 1$ with $F(0) = 0$, $F(1) = 1$.

Algorithm
```plaintext
Fib(n)  
if n > 1 then  
  return Fib(n-1) + Fib(n-2)  
else  
  return n;  
end if
```

Test run $Fib(4)$.
Definition
The nth Fibonacci number $F(n)$ is defined recursively as
$F(n) = F(n - 1) + F(n - 2)$ for $n > 1$ with $F(0) = 0, F(1) = 1$.

Algorithm Fib(n)
if $n > 1$ then
 return Fib($n-1$)+Fib($n-2$)
else
 return n;
end if

Test run
Fib(4).
Definition

The nth Fibonacci number $F(n)$ is defined recursively as $F(n) = F(n - 1) + F(n - 2)$ for $n > 1$ with $F(0) = 0, F(1) = 1$.

Algorithm Fib(n)

if $n > 1$ then
 return Fib($n-1$)+Fib($n-2$)
else
 return n;
end if

Test run Fib(4).
Implementation with an N-element array S, with elements stored from $S[0]$ to $S[t]$, where t is the index of the top element.

Note: arrays start at index 0 and thus t is initialized to -1.
Implementation with an N-element array S, with elements stored from $S[0]$ to $S[t]$, where t is the index of the top element. **Note:** arrays start at index 0 and thus t is initialized to -1.

- `size()`: return $t+1$;
- `isEmpty()`: return True if $t=-1$; else return False;
- `top()`: return $S[t]$;
Stack: Array-based Implementation

Algorithm push(o)

if size() = N then
 stack-full exception
end if

$t ← t + 1$

$S[t] ← o$

Algorithm pop()

if isEmpty() then
 stack-empty exception
end if

$e ← S[t]$

$S[t] ← null$

$t ← t - 1$

return e.
Abstract Data Type (ADT)

Queue

A queue is a container of objects that are inserted and removed according to the first-in first-out (FIFO) principle. Enter at the rear and remove from the front.
Abstract Data Type (ADT)

Queue
A queue is a container of objects that are inserted and removed according to the first-in first-out (FIFO) principle. Enter at the rear and remove from the front.

Stack: operations

- `enqueue(o)`: insert object `o` at the rear of the queue.
- `dequeue()`: remove and return the front of the queue.
Abstract Data Type (ADT)

Queue
A queue is a container of objects that are inserted and removed according to the **first-in first-out (FIFO)** principle. Enter at the **rear** and remove from the **front**

Stack: operations

- enqueue(o): insert object o at the rear of the queue.
- dequeue(): remove and return the front of the queue.
- size(): return the number of objects in the queue.
- isEmpty(): return a Boolean indicating if the queue is empty.
- front(): return the front of the queue.
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue.
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r-1]$, where f, $r-1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue. Q: what if r gets bigger than N?
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue.

Q: what if r gets bigger than N?

- size(): return $(N + (r - f)) \mod N$.
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue. Q: what if r gets bigger than N?

- size(): return $(N + (r - f)) \mod N$.
- isEmpty(): return True if $r == f$; else return False;
- front(): return $S[f]$;
Queue: Array-based Implementation

Algorithm enqueue(o)
if size()=N-1 then
 queue-full exception
end if
Q[r] ← o
r ← (r + 1) mod N

Algorithm dequeue()
if isEmpty() then
 queue-empty exception
end if
e ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return e.
FIFO vs LIFO

FIFO implemented by 2 LIFOs

enqueue(o): stack2.push(o).
dequeue(): if (!stack1.isEmpty()) then return stack1.pop(); else while (!stack2.isEmpty()) do {o = stack2.pop(); stack1.push(o);} return stack1.pop();

Question: LIFO implemented by 2 FIFOs?
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- enqueue(o): stack2.push(o).

Question: LIFO implemented by 2 FIFOs?
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- enqueue(o): stack2.push(o).
- dequeue(): if (! stack1.isEmpty()) then return stack1.pop();
 else while (! stack2.isEmpty()) do
 { o=stack2.pop(); stack1.push(o); } return stack1.pop();
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- enqueue(o): stack2.push(o).
- dequeue(): if (! stack1.isEmpty()) then return stack1.pop(); else while (! stack2.isEmpty()) do { o=stack2.pop(); stack1.push(o); } return stack1.pop();

Question: LIFO implemented by 2 FIFOs?
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()?
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.

Time of m push() and/or multi-pop() operations from an empty stack

- push() takes $O(1)$, multi-pop() takes $O(m)$, worst case $m \times O(m) = O(m^2)$.
- It is a correct $O(\cdot)$ statement, but a huge over-estimate.
Amortized Analysis

Stack: multi-pop()
▶ multi-pop(): pop out all objects in the stack by LIFO principle.
▶ multi-pop(): while (!isEmpty()) do pop();
▶ For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.

Time of m push() and/or multi-pop() operations from an empty stack
▶ push() takes $O(1)$, multi-pop() takes $O(m)$, worst case $m \times O(m) = O(m^2)$.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.

Time of m push() and/or multi-pop() operations from an empty stack

- push() takes $O(1)$, multi-pop() takes $O(m)$, worst case $m \times O(m) = O(m^2)$.
- It is a correct $O(\cdot)$ statement, but a huge over-estimate.
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of m operations on an initially empty stack takes $O(m)$ time.
Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.
Let \(M_0, \ldots, M_{m-1} \) be the series of operations, and let \(M_{i_0}, \ldots, M_{i_{k-1}} \) be the \(k \) multi-pop() operations. We have

\[
0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \; i_{-1} = -1.
\]
Theorem (1.30 on page 34)

A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.
Let M_0, \cdots, M_{m-1} be the series of operations, and let $M_{i_0}, \cdots, M_{i_{k-1}}$ be the k multi-pop() operations. We have

$$0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n-1, \ i_{-1} = -1.$$

Time cost of M_{i_j+1} to M_{i_j} for each $j = 0, \cdots, k-1$:
- $i_j - i_{j-1} - 1$ operations of push(). cost $O(i_j - i_{j-1})$.
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.

Let \(M_0, \cdots, M_{m-1} \) be the series of operations, and let \(M_{i_0}, \cdots, M_{i_{k-1}} \) be the \(k \) multi-pop() operations. We have

\[
0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \ i_{-1} = -1.
\]

Time cost of \(M_{i_{j+1}} \) to \(M_{i_j} \) for each \(j = 0, \cdots, k - 1 \):

- \(i_j - i_{j-1} - 1 \) operations of push(). cost \(O(i_j - i_{j-1}) \).
- 1 multi-pop(): only \(i_j - i_{j-1} - 1 \) elements in the stack. cost: \(O(i_j - i_{j-1}) \).
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.

Sum up, we have the total time is (telescoping sum)

\[
O \left(\sum_{j=0}^{k-1} (i_j - i_{j-1}) \right) = O(m).
\]
Amortized Analysis: cont’d

Theorem (1.30 on page 34)
A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.
Sum up, we have the total time is (telescoping sum)

$$O \left(\sum_{j=0}^{k-1} (i_j - i_{j-1}) \right) = O(m).$$

Remark: Worst case analysis of a single operation leads to loose bounds for a series of operations!
For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\
\leq \text{amortized complexity op1} \times m_1 + \text{amortized complexity op2} \times m_2.
\]
For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\
\leq \text{amortized complexity op1} \times m_1 + \text{amortized complexity op2} \times m_2.
\]

Thus, push() and multi-pop() have amortized complexity \(O(1)\).
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!
Amortized Analysis: more intuitive derivation

- **Question**: perform amortized analysis besides by definition?
- **Key**: analyze and upper bound the complexity of a series of operations!

\[
\text{#primitive operations in } m \text{ operations } \leq \text{resources spent}
\]
Amortized Analysis: more intuitive derivation

- **Question**: perform amortized analysis besides by definition?
- **Key**: analyze and upper bound the complexity of a series of operations!

\[
\text{\#primitive operations in m operations} \leq \text{resources spent}
\]

When the resource is

- Money $\Rightarrow \text{The Accounting Method}$.
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!

\[\text{#primitive operations in m operations} \leq \text{resources spent} \]

When the resource is

- Money \Rightarrow **The Accounting Method**.
- Energy \Rightarrow **The Potential Function Method**
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
▶ Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
▶ Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
- Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\text{#all primitive ops} \leq \text{#all money deposited} = \text{amortized complexity} \times \text{# ops}
\]
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
▶ Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
▶ Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\# \text{all primitive ops} \leq \# \text{all money deposited} = \text{amortized complexity} \times \# \text{ ops}
\]

\leq \text{ due to your balance being non-negative all the time!}
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.

Credit Invariant

- Invariant: # of (bank) credits = # of items in the stack.
- Prove the invariant for each operation: push(), multi-pop.
The Accounting Method: Example

Push() & Multi-pop()

▷ deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
▷ deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the **non-negativity** of your balance.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the non-negativity of your balance.

Credit Invariant

- Invariant: # of (bank) credits = # of items in the stack.
- Prove the invariant for each operation: push(), multi-pop().