More Examples on Loop Invariants

Lecturer: Xiaodi Wu Scribe: Xiaodi Wu

1 Example 1

Consider the following pseudo-code:

```plaintext
x ← 2, y ← 0
while y < n do
  x ← x^3
  y ← y + 1
end while
```

Assuming that \(n \) is a non-negative integer, use a loop invariant to prove that \(x = 2 \cdot 3^y \) when the loop terminates. First, find your pre-loop and post-loop states \(P \) and \(Q \). Then design and prove a loop invariant \(I \), which leads to the above conclusion. Recall to prove a loop invariant, one needs to show (1) \(P \implies I \) (2) \(\langle I \land C \rangle B \langle I \rangle \) (3) \((I \land \neg C) \implies Q \). (HINT: Remember that \(a^b \cdot a^c = a^{b+c} \).)

Solution: We will use \((x = 2^{3^y}) \land (0 \leq y \leq n) \) as the loop invariant \(I \). Then it is easy to see that \(P \) is \(x = 2, y = 0 \) and \(Q \) is \(y = n, x = 2^{3^n} \). Let us prove the loop invariant \(I \).

- \(P \implies I \). Initially, \(2^{3^0} = 2 = x \), so the invariant holds before the start of the loop.

- \((I \land C) B(I) \). Let \(x' \) and \(y' \) be the new values of \(x \) and \(y \) at the end of the loop. In the loop, we have
 \[
 x' = x^3, \quad y' = y + 1.
 \]

 Then we have
 \[
 x' = x^3 = 2^{3^y} \cdot 2^{3^y} = 2^{3^{y+1}} = 2^{3^{y'}}.
 \]

 Because the condition \((C) y < n\) holds, then \(y' \leq n \). Thus, we have the loop invariant \((x' = 2^{3^{y'}}) \land (0 \leq y' \leq n)\) holds for the new value \(x' \) and \(y' \).

- \((I \land \neg C) \implies Q \). When \(C \) does not hold, combined with \(I \), it implies \(y = n \). By the loop invariant \(I \), then we have \(x = 2^{3^n} \).