1. Show that if all tally sets in \(NP \) are in \(P \), then \(EXT=NEXT \).

2. Is
 (a) \(DTIME(n) = DTIME(n + 1)? \)
 (b) \(DTIME(2^n) = DTIME(2^n+1)? \)
 (c) \(DTIME(2^{2n}) = DTIME(2^{2n+1})? \)

3. Show \(NP \neq DSPACE(n) \) (exercise 7.4.7). Maybe show that one of the classes is closed under \(n^2\)-erasing.

4. Show that the subgraph isomorphism problem is \(NP \)-complete. (exercise 9.5.23, part (a))

5. Show that the firehouse problem is \(NP \)-complete: Given a graph \(G \) and integers \(f \) and \(d \), is there a way to select \(f \) vertices of \(G \) on which to locate “firehouses” so that no vertex is at distance more than \(d \) from a firehouse?

6. Let \(HP \) refer to the Hamilton path problem, and \(HC \) to the Hamilton cycle problem. Show directly that \(HC \equiv_m HP \).