Artificial neural networks in hardware: A survey of two decades of progress

Janardan Misra a,*, Indranil Saha b

a HTS Research, 151/1 Doraisanipalya, Bannerghatta Road, Bangalore 560076, India
b Computer Science Department, University of California, Los Angeles, CA 90095, USA

ARTICLE INFO

Article history:
Received 22 November 2009
Received in revised form 22 January 2010
Accepted 5 March 2010
Communicated by A. Prieto
Available online 5 May 2010

Keywords:
Hardware neural network
Neurochip
Parallel neural architecture
Digital neural design
Analog neural design
Hybrid neural design
Neuromorphic system
FPGA based ANN implementation
CNN implementation
RAM based implementation
Optical neural network

ABSTRACT

This article presents a comprehensive overview of the hardware realizations of artificial neural network (ANN) models, known as hardware neural networks (HNN), appearing in academic studies as prototypes as well as in commercial use. HNN research has witnessed a steady progress for more than last two decades, though commercial adoption of the technology has been relatively slower. We study the overall progress in the field across all major ANN models, hardware design approaches, and applications. We outline underlying design approaches for mapping an ANN model onto a compact, reliable, and energy efficient hardware entailing computation and communication and survey a wide range of illustrative examples. Chip design approaches (digital, analog, hybrid, and FPGA based) at neuronal level and as neurochips realizing complete ANN models are studied. We specifically discuss, in detail, neuromorphic designs including spiking neural network hardware, cellular neural network implementations, reconfigurable FPGA based implementations, in particular, for stochastic ANN models, and optical implementations. Parallel digital implementations employing bit-slice, systolic, and SIMD architectures, implementations for associative neural memories, and RAM based implementations are also outlined. We trace the recent trends and explore potential future research directions. © 2010 Elsevier B.V. All rights reserved.

1. Introduction

Hardware devices designed to realize artificial neural network (ANN) architectures and associated learning algorithms especially taking advantage of the inherent parallelism in the neural processing are referred as hardware neural networks (HNN). Although most of the existing ANN applications in commercial use are often developed as software, there are specific applications such as streaming video compression, which demand high volume adaptive real-time processing and learning of large data-sets in reasonable time and necessitate the use of energy-efficient ANN hardware with truly parallel processing capabilities. Specialized ANN hardware (which can either support or replace software) offers appreciable advantages in these situations as can be traced as follows [1]:

- **Speed**: Specialized hardware can offer very high computational power at limited price and thus can achieve several orders of speed-up, especially in the neural domain where parallelism and distributed computing are inherently involved. For example, very large scale integration (VLSI) implementations for cellular neural networks (CNNs) can achieve speeds up to several teraflops [2], which otherwise is a very high speed for conventional DSPs, PCs, or even work stations.
- **Cost**: A hardware implementation can provide margins for reducing system cost by lowering the total component count and decreasing power requirements. This can be important in certain high-volume applications, such as ubiquitous consumer-products for real-time image processing, that are very price-sensitive.
- **Graceful degradation**: An intrinsic limitation of any sequential uni-processor based application is its vulnerability to stop functioning due to faults in the system (fail-stop operations). Primary reason is the lack of sufficient redundancy in the processor architecture. As some recent studies [3] suggest, even with the advancement and introduction of the multi-core PC processors architectures, the need for having effective fault-tolerant mechanisms is still present. In contrast to this parallel and distributed architectures allow applications to continue functioning though with slightly reduced performance (graceful degradation) even in the presence of faults in some components. For those ANN application which require complete availability or are safety critical, fault tolerance is of utmost importance and in this respect parallel hardware implementations offer considerable advantage.
Mapping highly irregular and non-planar interconnection topology entailing complex computations and distributed communication on regular two dimensional surfaces poses significant challenge for the (VLSI) HNN designers. Also since hardware constraints (especially analog components) may introduce computational errors, degradation of learning and lack of accuracy in results become a major challenge while designing HNNs. These errors can divert the trajectory of the learning process, generally increasing the number of cycles required to achieve convergence. Non-linearity of activation functions poses yet another challenge while designing a compact hardware. To address these challenges wide spectrum of technologies and architectures have been explored in the past. These include digital [4–6], analog [7,8], hybrid [9,10], FPGA based [11–13], and (non-electronic) optical implementations [14–16]. At this point it is important to add that, for practical purposes, a HNN realizing an ANN model alone is not sufficient by itself and a fully operational system would demand many other components, e.g., for sensor acquisition, for pre and post processing of inputs and outputs etc.

Although not as widespread as ANNs in software, there do exist HNNs at work in real-world applications. Examples include optical character recognition, voice recognition (Sensory Inc., RSC Micro controllers and ASSP speech recognition specific chips), Traffic Monitoring (Nestor TrafficVision Systems), Experiments in High Energy Physics [17] (Online data filter and Level II trigger in H1 electron–proton collision experiment using Adaptive Solutions CNAPS boards), adaptive control, and robotics. See Table 1 for more examples.

With the advent of these technologies need of having timely surveys has also been felt. There are indeed several surveys which have appeared from time to time in the past. We will briefly discuss these surveys next.

Related surveys: Ref. [7] by Mead, [4, Part IV] by Kung, and [49] by Glesner and Poechmueller are some early references on the VLSI implementations of the ANN models. Lindsey and Lindbad [1,50] present one of earliest detailed overviews of the field covering most of electronic approaches as well as commercial hardware. Heemskerk [51] presents an overview of Neurocomputers built from accelerator boards, general purpose processors, and neurochips coming out from both industries and academia up to mid 90s. Ienne et al. [52] present a survey of digital implementations by considering two basic designs: Parallel systems with standard digital components and parallel systems with custom processors. They also discuss their experience with running a small ANN problem on two of the commercially available machines and conclude that most of the training times are actually slower or only moderately faster than on a serial workstation. Aybay et al. [53] lay out a set of parameters, which can be used to classify and compare digital neurocomputers and neurochips. Moerland and Fiesler [54] present an overview of some of the important issues encountered while mapping an ideal ANN model onto a compact and reliable hardware implementation, like quantization and associated weight discretizations, analog non-uniformities, and non-ideal responses etc. They also discuss hardware friendly learning algorithms. Sundararajan and Saratchandran [55] discuss in detail various parallel implementation aspects of several ANN models (back propagation (BP) based NNs, ART NN, recurrent NN etc.) using various hardware architectures including scalable general purpose parallel computers and MIMD (multiple instruction multiple data) with MPI interface. Individual chapters discuss reviews, analysis, and experimental case studies, e.g., on implementations for BP based NNs and associated analysis of network and training set parallelisms. Burr [56,57] presents techniques for estimating chip-area, performance, and power consumption in the early stages of architectural exploration for HNN designs. These estimation techniques are further applied for predicting capacity and performance of some of the neuroarchitectures. Hammerstrom [58] provides an overview of the research done in the digital implementations of ANNs till late 90s. Reyneri [59] presents an annotated overview of the ANNs with “Pulse Stream” modulations including a comparative analysis of various existing modulations in terms of accuracy, response time, power, and energy requirements. Zhu and Sutton [60] survey Field Programmable Gate Array (FPGA) based implementations of ANNs discussing different implementation techniques and design issues. Based upon the purpose of reconfiguration (prototyping and simulation, density enhancement, and topology adaptation) as well as data representation techniques (integer, floating point, and bit stream arithmetic) it provides taxonomy for classifying these implementations. Reyneri’s survey on neurofuzzy hardware systems [61] is an important paper discussing various technological aspects of hardware implementation technologies with a focus on hardware/software co-design techniques. Diasa et al. [62] is one of the latest surveys with specific focus to commercially available hardware. Schrauwen and D’Haene [11] provide a brief overview of some of the recent FPGA based implementations of Spiking Neural Networks (SNN). Another more recent article by Maguire et al. [63] also presents a detailed overview of FPGA based implementations of SNN models and brings out important challenges ahead. Bartolozzi and Indiveri in [64] provide a comparative analysis of various hardware implementations for the spiking synaptic models. Smith [65] surveys digital and analog VLSI implementation approaches for neuronal models with or without explicit time. Probably the most recent survey of the field with very interesting critical historical analysis of the major developments and limitations of digital, analog, and HNN approaches is presented by Hammerstrom and Waser in [66]. Also Indiveri et al. [67] present a survey of the recent progress in the field of neuromorphic designs and discusses challenges ahead for augmenting these systems with cognitive capabilities. Some of the HNN topics have found wider audience and there are specialized volumes on these topics. An edited volume by Austin [68] provides a detailed glimpse on the RAM based HNN designs. Similarly another edited volume [69] by Ormoindi and Rajapakse presents a recent update on FPGA based ANN implementations including foundational issues, various implementations, and lessons learned from a large scale project. An edited volume by Valle [70] presents discussions on various approaches to build smart adaptive devices.

Table 1

Examples of HNN applications.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Examples [HNN types]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High energy physics</td>
<td>[17] (Digital-neurochip)</td>
</tr>
<tr>
<td>Pattern recognition</td>
<td>[18] (FPGA), [6] (Digital)</td>
</tr>
<tr>
<td>Image/object recognition</td>
<td>[19,20] (RAM based), [21] (Optical)</td>
</tr>
<tr>
<td>Image segmentation</td>
<td>[22] (FPGA), [23] (Digital), [24] (FPGA)</td>
</tr>
<tr>
<td>Generic image/video processing</td>
<td>[25] (RAM based), [26,27] (Analog), [28] (Optical), [29] (FPGA)</td>
</tr>
<tr>
<td>Intelligent video analytics</td>
<td>[30,31] (FPGA), [32,33] (Hybrid)</td>
</tr>
<tr>
<td>Finger print feature extraction</td>
<td>[34] (Analog)</td>
</tr>
<tr>
<td>Direct feedback control</td>
<td>[35] (Analog)</td>
</tr>
<tr>
<td>Autonomous robotics</td>
<td>[36] (Digital), [37] (FPGA), [38,39] (Hybrid), [40] (DSP)</td>
</tr>
<tr>
<td>Sensorless control</td>
<td>[41] (FPGA)</td>
</tr>
<tr>
<td>Optical character/handwriting recognition</td>
<td>[42] (Digital)</td>
</tr>
<tr>
<td>Acoustic sound recognition</td>
<td>[43] (DSP)</td>
</tr>
<tr>
<td>Real-time embedded control</td>
<td>[44] (Digital)</td>
</tr>
<tr>
<td>Audio synthesis</td>
<td>[45] (Analog)</td>
</tr>
<tr>
<td>Assignment solver</td>
<td>[46] (Analog), [47] (Digital)</td>
</tr>
<tr>
<td>Olfactory sensing</td>
<td>[48]</td>
</tr>
</tbody>
</table>
Even though there exist several reviews and edited volumes on the subject, most of these either focus on specific aspects of HNN research or may not be so recent. This paper attempts to survey on all major HNN design approaches and models discussed in literature and in commercial use. Primary objective is to review the overall progress in the field of HNN over last two decades across all major ANN models, hardware design approaches, and applications. We cover these topics by including most of the important works which have appeared in the literature with an optimistic perspective. However, owing to space limitations, there are topics, which will not be covered in this survey including hardware friendly learning algorithms (e.g., perturbation learning [71]), constructive learning [72], cascade error projection learning [73,74], and local learning [75] with its special case of spike based Hebbian learning [76], HNN designs focused on specific ANN models (e.g., MLP with back propagation [77,78], radial basis function networks [79,31,80], and Neocognitron [81]), and neurocomputers [49,82].

Rest of the paper is organized as follows: Issues related to the parameters used for evaluating an HNN system are highlighted in Section 2. Section 2 also presents discussion on difficulties in HNN classification. Section 3 deals with different electronic approaches to implement a single neuron, whereas Section 4 provides a presentation on complete HNN models available as chips. CNN implementations are covered in Section 5. Neuromorphic systems including implementations for spiking NNs are covered in Section 6. A discussion on optical neurocomputers appears in Section 7. Finally Section 8 concludes the article by outlining some of the possible future research directions.

2. Evaluation parameters and classification

An ANN is generally specified in terms of the network topology, activation function (AF), learning algorithm, number and type of inputs/outputs, number of processing elements (neurons) and synaptic interconnections, number of layers etc. For a hardware implementation, in addition, specifications may include the technology used (analog, digital, hybrid, or FPGA), data representation (fixed/floating-point), weight storage, bits of precision, programmable or hardwired connections, on-chip learning or chip-in-the-loop training, on-chip or off-chip transfer function, e.g., look-up table, and degree of cascadability.

Based upon these parameters, various figures of merit are derived to indicate the resultant hardware performance. The most common performance ratings include

- **Connections-per-second (CPS) for processing speed**: Rate of multiplication/accumulate operations and transfer function computation during testing phase. This indicates how well the specific algorithm suits the architecture.
- **Connection-updates-per-second (CUPS) for learning speed**: Rate of weight changes during learning, involving calculation and update of weights. This measures how fast a system is able to perform input-output mappings.
- **Synaptic energy**: Average energy required to compute and update each synapse. Measured as WCPs (watt per connection-per-second) or J per connection [59].

Keulen et al. [83] propose an improved measure that also accounts for accuracy by defining bit connection primitives per second: \(\text{CPPS} = b_i \times b_w \times \text{CPS} \), with \(b_i\) and \(b_w\) denoting input and weight accuracy in bits, respectively. For RBF, instead of these, pattern presentation rate is actually used as a performance parameter.

Hardware constraints, such as weights/states precision, finite arithmetic/quantization effects caused by discrete values of the channel length, width of MOS transistor geometries, and AF realization play a major role in HNNs. Conru and Jenne [84] introduce the notion of algorithmic efficiency for performance measurement and evaluation of digital neurocomputers. Algorithmic efficiency is defined as a measure of the effect of the hardware constraints on the convergence properties of various ANN models to be simulated on a neurocomputer. They argue that comparing relative speeds in MCUPS is not sufficient and instead estimate global speedup of a neurocomputer as a product of its raw hardware speedup (corresponding to MCUPS) and the algorithmic efficiency (w.r.t. a specific ANN model).

The non-linearity associated with the AFs represents one of the major bottlenecks in digital VLSI implementation of ANNs, involving large overheads in time and silicon area. Possible solutions include use of look-up tables [85,86] and piecewise linear approximating functions [87]. In case of look-up table, table size again imposes an upper bound on the number of bits. A statistical study by Holt and Hwang [88] on the precision requirements for a two layer MLP with BP learning showed that under certain assumptions (e.g., uniformly distributed input variables) a fixed point encoding of 16bit is sufficient and at least 12 bits might be essential. Bieu [89] presents several upper and lower bounds for the number-of-bits required for solving a classification problem using neural networks. These bounds are in turn used to devise ways for efficiently building the hardware implementations. Use of 1st and 2nd order Taylor interpolation also provides relatively high accuracy (up to 16–20bits) even with very small look-up tables (256 words).

For large scale neural network, synaptic storage density is very important, and memory optimization plays an important role. However, there is a trade-off between the memory size and power consumption in the memory—one transistor DRAM has the highest density, but consumes more power than SRAM, as DRAM memory cells need to be refreshed due to leakage current, on the other hand six transistor SRAM consumes the least power, but achieves density which is factor 4 worse than one transistor DRAM.

2.1. Hardware neural network classification

Neural network hardware is becoming increasingly difficult to classify in a way that the classification yields useful comparative information for practical purposes. Primary source of difficulty arises from the multitude of characteristics associated with any such hardware implementation both arising from chosen hardware as well as underlying ANN model. As mentioned before, Aybay et al. [53] list several classification attributes including transfer function characteristics: on-chip/off-chip, analog/digital, threshold/look-up table/computation; cascadability, clock and data transfer rates. Based upon these attributes several HNN chips and designs were classified. Though such a classification covers wide range of attributes, extracting information for practical purposes using comparative analysis is relatively difficult. For these reasons, we do not attempt here to present another classification, though instead structure the discussion under several themes—starting with a discussion on basic neuronal level hardware designs, then progressing to the chip level approaches for various ANN models, followed by a discussion on several parallel implementation of specific ANN models including CNN, and finally focusing discussion on specific approaches including neuromorphic designs, and optical neurocomputers. In Table 2, we present an overview of the examples of various HNN implementations across wide range of ANN models. Forthcoming sections provide further details on these.

3. Hardware approaches to neuronal design

The transmission of signals in biological neurons through synapses is a complex chemical process in which specific
neurotransmitter substances are released. Their effect is to change the electrical potential in the receiving cell by changing the osmotic and ionic equilibrium across the cell membrane. If this potential reaches a threshold, the neuron fires. Artificial neuron models attempt to reproduce this phenomena at varying levels of abstractions [115].

In this section we describe the basic structure of digital and analog neurons used for HNN implementations and briefly discuss the implementations of spiking neurons and their synaptic dynamics. An analog implementation is usually efficient in terms of chip area and processing speed, but this comes at the price of a limited accuracy of the network components. In a digital implementation, on the other hand, accuracy is achieved at the cost of efficiency (e.g., relatively larger chip area, higher cost, and more power consumption). This amounts to a trade-off between the accuracy of the implementation and the efficiency of its performance.

It is also important to add at this point that the HW designs to be discussed throughout this paper involve significant manual ad-hoc steps, which is a time-consuming and expensive operation and a major factor in increasing “time-to-market”. We will have bit more to say on this in the conclusion section.

3.1. Digital neuron

In a digital neuron, synaptic weights are stored in shift registers, latches, or memories. Memory storage alternatives include one, two or three transistor dynamic RAM, or four or six transistor static RAM [49]. Adders, subtracters, and multipliers are available as standard circuits, and non-linear AFs can be constructed using look-up tables or using adders, multipliers etc. A digital implementation entails advantages like simplicity, high signal-to-noise ratio, easily achievable cascadability and flexibility, and cheap fabrication, along with some demerits like slower operations (especially in the weight \(\times \) input multiplication). Also conversion of the digital representations to and from an analog form may be required since usually input patterns are available in analog form and control outputs also often required to be in analog form.

In a recent work Muthuramalingam et al. [116] discuss in detail issues involved with the implementation of a single neuron in FPGA including serial versus parallel implementation of computational blocks, bit precision and use of look-up tables. Hikawa [102] describes digital pulse-mode neuron which employs piecewise-linear function as its AF. The neuron is implemented on a FPGA rendering the piecewise-linear function programmable and robust against the changes in the number of inputs. In [117,118], Daalen et al. demonstrate through experiments how linear and sigmoid AFs can be generated in a digital stochastic bit stream neuron. The AF of the neuron is not built in the hardware explicitly, rather it is generated by the interaction of two probability distributions. Different AFs can be generated by controlling the distribution of the threshold values provided to each neuron.

Skrbek [119] presents an architecture and overview of shift-add neural arithmetic, for an optimized implementation of multiplication, square root, logarithm, exponent and non-linear AFs at neuronal level for fast perceptron and RBF models. Functions are linearly approximated, for example, 2\(^x\) is be approximated as \(2^{\text{int}(x)} \times (1+\text{frac}(x))\) where \(\text{int}(x)\) calculates the integral part of \(x\) and \(\text{frac}(x)\) is its fractional part. Shift operation calculates \(2^{\text{int}(x)}\), whereas linear approximation \((1+\text{frac}(x))\) approximates remaining \(2^{\text{frac}(x)}\). Further an FPGA based implementation for the shift-add arithmetic is discussed involving only adders and barrel shifters.

3.2. Analog neuron

In an analog neuron weights are usually stored using one of the following: resistors [120], charge-coupled devices [121], capacitors [122], and floating gate EEPROMs [123]. In VLSI, a variable resistor as a weight can be implemented as a circuit involving two MOSFETs [124]. However, discrete values of channel length and width of the MOS transistors may cause quantization effect in the values of the weight. The scalar product and subsequent non-linear mapping is performed by a summing amplifier with saturation [125].

In the analog domain the characteristic non-linear function-ality of neuronal AF can sometimes be captured directly (e.g., above saturation level current and voltage characteristics of transistors), yet a coherent set of all the basic elements is difficult to achieve. As the AFs used in software ANN implementations cannot be easily implemented in VLSI, some approximation functions are instead considered to act as AFs [124]. Also analog neuron implementations benefit by exploiting simple physical effects to carry out some of the network functions [7]. For example, the accumulator can be a common output line to sum currents. Analog elements are generally smaller and simpler than their digital counterparts. On the other hand, obtaining consistently precise analog circuits, especially to compensate for variations in temperature and control voltages, requires sophisticated design and fabrication.

In analog modeling, signals are typically represented by currents [79] and/or voltages [123] which work with real numbers. Current flow is preserved at each junction point by Kirchhoff’s Current Law, and during multiplication various

Table 2

<table>
<thead>
<tr>
<th>ANN</th>
<th>HNN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Digital</td>
</tr>
<tr>
<td>MLP</td>
<td>[90]</td>
</tr>
<tr>
<td>RBF</td>
<td></td>
</tr>
<tr>
<td>SOFM</td>
<td>[93]</td>
</tr>
<tr>
<td>Feed-forward</td>
<td>[77]</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>Spiking NN</td>
<td>[23]</td>
</tr>
<tr>
<td>Pulse</td>
<td>[99]</td>
</tr>
<tr>
<td>Coded NN</td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td>[103]</td>
</tr>
<tr>
<td></td>
<td>[105]</td>
</tr>
<tr>
<td>Associative</td>
<td>[108]</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>Recurrent NN</td>
<td>[8]</td>
</tr>
<tr>
<td>Stochastic NN</td>
<td></td>
</tr>
</tbody>
</table>

resistance values can be used for the weighting operation of the signal. Thus a network of resistors can simulate the necessary network connections and their resistances are the adaptive weights needed for learning. Besides, the non-linear voltage-current response curve of field effect transistors (FETs) makes them especially suitable for simulating neuronal AFs. However, the encoding of signals as voltages makes certain operations like addition rather difficult to implement as compared to multiplication and threshold activation. Also a major problem with this representation scheme is that before performing any operation a signal needs to be held constant for some time. The current which flows between the source and sink depends linearly on the potential difference between them, and the proportionality constant is determined by the stored charge. Learning involves weight updates corresponding to changes in the amount of charge stored. Even if the power source is disconnected, the magnitude of the weights remains unchanged. A different approach [26], with charged coupled devices (CCDs), is used to store the charge dynamically.

The main challenges for analog designs are the synapse multiplier over a useful range and the storage of the synapse weights. Moreover, there are some characteristics inherent to analog computation like the spatial non-uniformity of components (which are particularly troublesome when the training of the network is done off-chip, without taking these component variations into account) and non-ideal responses (that particularly affect the implementation of a linear multiplication and non-linear AF, like the standard sigmoid).

There are also attempts for designing digitally programmable analog building blocks for ANN implementations. Almeida and Franca [126] propose a synapse architecture combining a quasi-passive algorithmic digital to analog converter providing a 7-bit bipolar weight range and on-chip refreshing of the analog weight followed by a four quadrant analog-digital multiplier with extended linear range. Hamid et al. [127] discuss an approach of including the effect of Deep Sub-Micrometer (DSM) noise in MOSFETs for circuit-level and architecture-level simulations. They show that that DSM noise has the potential to be exploited for probabilistic neural computation architecture hardware implementation. For example, they tested the effect of a noisy multiplier on the performance of Continuous Restricted Boltzmann Machine (CRBM) [128,129] and result demonstrate that stochastic neuron implemented using noisy MOSFET can produce performance comparable with that of a “perfect” CRBM with explicit noise injected into it.

3.3. Silicon implementation of spiking neuron and its synaptic dynamics

Actual communication between biological neurons happens by short electrical pulses, which are known as action potentials or spikes. Integrate and fire (I&F) neuron model is among the simplest models with spiking dynamics. An I&F neuron model can handle continuously time varying signals, support synchronization, and is computationally powerful as compared to non-spiking neuron models [130]. Leaky I&F model and its generalization as spike response model, non-linear I&F model, Hodgkin–Huxley model, Mihalas–Niebur model, and Morris–Lecar model are among the better known extensions of the basic I&F model. Networks of I&F neurons exhibit a wide range of capabilities including feature binding, segmentation, pattern recognition, onset detection, and input prediction [131]. We will next briefly discuss some of the representative hardware implementations (generally using mixed-mode circuits) for I&F model and some of its extensions since they are often used while designing neuromorphic systems as discussed later in the Section 6.

For adequately realizing an I&F model in hardware, it is necessary that the realized hardware can set at least an explicit threshold to define occurrence of a spike and implements spike-frequency adaptation. One of the early designs meeting these requirements was proposed by Schultz and Jabri in [132] which can set an explicit threshold voltage and can realize spike-frequency adaptation. Because these spiking neuron models are capable of generating potentially varied functionalities, their detailed hardware realizations naturally tend to consume relatively larger silicon area and power. For example, Rasche and Douglas [133] describe an analog implementation of Hodgkin–Huxley model with 30 adjustable parameters, which required 4 mm² area for a single neuron. Therefore, in order to be able to build larger neuromorphic systems using these models, it is necessary that these designs are optimized for area and power requirements. Schai [98] presents a circuit design for generating spiking activity. The circuit integrates charge on a capacitor such that when the voltage on the capacitor reaches a certain threshold, two consecutive feedback cycles generate a voltage spike and then bring the capacitor back to its resting voltage. The size of the presented circuit is small enough that it can be used in designing the larger systems on a single chip. Later, Indiveri and Fusi [76] present a design employing 20 transistors and 3 capacitors for the leaky I&F model with average power consumption in the range of [0.3–1.5]μW.

Models by Izhikevich [134] and Mihalas and Niebur [135] are one of the recent attempts to define computationally simpler models of a spiking neuron having biological accuracy for spiking and bursting activity. The silicon realization of Izhikevich’s model has been presented in a recent work by Wijeekoon and Dudek [136]. However, since Izhikevich’s model does not land itself directly to parametric biological interpretation, it is bit difficult to integrate in larger neuromorphic designs. Fowosetu et al. [137] on the other hand present the hardware realization of a simplified Mihalas and Niebur’s model in terms of switched capacitor circuits fabricated using 0.15 um CMOS technology, which could be used in larger neuromorphic systems.

There have also been concentrated efforts in modeling and implementing temporal dynamics of synaptic (ionic) current in a biological neuron enabling learning of neural codes and encoding of spatiotemporal spike patterns. Synaptic circuits implementing synaptic dynamics operate by translating presynaptic voltage pulses into postsynaptic currents injected in the membrane of the target neuron, with a gain corresponding to the synaptic weight. Briefly the implementations for the synaptic models can be classified as presented by Bartolozzi and Indiveri in [64]:

- **Multiplier synapse**: For models representing synaptic information in terms of mean firing rates, synapse is usually modeled as a multiplier circuit.
- **Pulsed current-source synapse**: Synapse is implemented in analog form using transistors operating in subthreshold region such that an output pulsed current from the synapse circuit is generated for the duration of the input voltage spike given to it digitally. The underlying model represents synaptic information in terms of mean firing rates (see [7,138]).
- **Reset-and-discharge synapse**: Using 3 p-EFT transistors and a capacitor such implementation can give rise to a postsynaptic excitatory current (EPSC), which can last longer then the input voltage spike and decays exponentially with time (see [139]).
- **Linear charge-and-discharge synapse**: It is a variant of reset-and-discharge synapse, where first the input voltage spike decreases linearly as the postsynaptic excitatory current increases exponentially. After this, input voltage pulse
increases to a reference power supply voltage and at the same
time postsynaptic current decreases [see 140]).

- **Current-mirror-integrator synapse**: It is a variant of linear
charge-and-discharge synapse where two transistors and a
capacitor form a current mirror integrator circuit. In contrast to
linear charge-and-discharge synapse, postsynaptic excita-
tory current increases in a sigmoidal fashion and later
decreases in a hyperbolic fashion with respect to time
(see [141]).

- **Log-domain integrator (LDI) synapse**: It is another variant of
linear charge-and-discharge synapse which utilizes the loga-
Rithmic relationship between subthreshold MOSFET gate-to-
source voltage and the channel current. The resultant synaptic
circuit works like a linear low-pass filter. However, the circuit
area is relatively larger as compared to other models
(see [142]).

- **Diff-pair integrator (DPI) synapse**: Destexhe et al. [143]
proposed a macroscopic model for synaptic transmission and
the linear summation property of postsynaptic currents, for
which Bartolozzi and Indiveri [64] propose a VLSI synaptic
circuit—the diff-pair integrator—that implements this model
as a log-domain linear temporal filter and supports synaptic
properties including short-term depression to conductance
based EPSC generation. The synaptic circuit uses six transistors
and a capacitor and effectively works same as low-pass linear
filter. However, unlike LDI synapse, DPI synapse can give rise to
exponential dynamics for both excitatory as well as inhibitory
postsynaptic currents.

For further details, reader is suggested to refer to [64], where
authors present an overview and comparative analysis of existing
synaptic circuits proposed in the literature, e.g., [144,140,145],
including their own DPI circuit.

4. Hardware neural network chips

This section provides an overview of HNNs implemented as
chips, also known as neurochips, realizing complete ANN models.
These include digital neurochips, analog neurochips, hybrids,
neuromorphic implementations, FPGA-based neurochips, RAM
based neurochips, and neurochips for neural associative mem-
ories. A general-purpose neurochip is capable of implementing
more than one neural algorithm for a particular application, while
a special-purpose neurochip models a particular neural algorithm
for many applications.

Typically an activation block, performing the weight \(\times \) input
multiplication and their summation, is always on the neurochip,
whereas other blocks, involving neuron state, weights, and
activation function, may be on/off the chip and some of these
functions may even be performed by a host computer. Neuron
states and weights can be stored in digital/analog form, and the
weights can be loaded statically or updated dynamically.

4.1. Digital neurochips

The majority of the available digital chips use CMOS technol-
yogy. There are several categories of digital chips, like bit-slice,
single instruction multiple data (SIMD), and systolic arrays. The
advantages of digital technology include the use of well-under-
stood fabrication techniques, RAM weight storage, and flexible
design. The biggest challenge for designers is the synapse
multiplier, which normally is the slowest element in the network
processing.

In case of conventional bit-slice architectures, a processor is
constructed from modules, each of which processes one bit-field
or “slice” of an operand. They provide simple and cheap building
blocks (typically single neurons) to construct networks of larger
size and precision. An example is Micro Devices’ MD1220 Neural
Bit Slice [146], one of the first commercial HNN chips. It has eight
neurons with hard-limiting thresholds and eight 16-bit synapses
with 1-bit inputs. With bit-serial multipliers in the synapse, the
chip provides a performance of about 9 MCPS. Other examples of
slice architectures are the Philips’ Lneuro chip [147] and the
Neuralogix’ NLX-420 Neural Processor [148]. Slice architectures
generally include off-chip learning.

In case of SIMD, each of the multiple PEs run the same
instruction simultaneously, but on different data sets [149]. For
a better match with ANN requirements one has to turn to program-
able systems, and most such designs are SIMD with
minor variations. Instructions are often horizontally encoded, that
is, each field of the instruction word directly configures a part of
the PE. The two features, viz., no address/issue logic and reduced
instruction decoding, render the implementation suitable for the
resources required by general ANNs. In Adaptive Solutions’
N64000 [85] with 64 PEs, each PE holds a 9 \(\times 16 \) integer
multiplier, a 32-bit accumulator, and 4 KB of on-chip memory for
weight storage. Kim et al. [42] propose a high performance neural
network processor based on the SIMD architecture that is
optimized for image processing. The proposed processor supports
24 instructions, and consists of 16 Processing Units (PUs) per chip.
Each PU includes 24-bit 2K-word Local Memory and one PE.

In case of systolic array based designs, each PE does one step of
a calculation synchronously with other PEs and then passes its
result to the next processor in the pipeline, thus making the
architecture very suitable for implementing efficient synapse
multiplier. For example, in Siemens’ MA-16 [151], fast matrix-
natrix operations (multiplication, subtraction, or addition) are
implemented with 16-bit elements for 4 \(\times 4 \) matrices. The
multiplier outputs and accumulators have 48-bit precision.

Weight storage is off-chip RAM and neuron transfer functions
are off-chip via look-up tables. Generally systolic arrays are
application specific processing arrays for problems displaying a
large amount of fine-grained parallelism, and thus they are well
matched to ANNs having low data bandwidth and potentially low
utilization ratio of the processing units. Their disadvantage lies in
the high complexity of the system controlling and interfacing the
array with a host system. Some further examples of systolic
architectures for HNNs include vector processor arrays [152],
common bus architecture [49], ring architecture [5], and TORAN
(two-in-one ring array network) architecture [153]. Eppler et al.
[92] presented a cascadable, systolic processor array called simple
applicable neural device (SAND), designed for fast processing of
neural networks. The neurochip may be mapped on feed-forward
networks, RBF, and Kohonen feature maps. The chip is optimized
for an input data rate of 50 MHz, 16 bit data and could be
considered having low cost at the time of its design. The
performance of a single SAND chip that uses four parallel 16 bit
multipliers and 40 bit adders in one clock cycle is 200 MCPS. In
early nineties, Wang proposed an analog recurrent neural

\[1\] In a horizontally encoded instruction set, each field in an instruction word
controls some functional unit or gate directly, as opposed to vertical encoding
where instruction fields are decoded (by hard-wired logic or microcode) to
produce the control signals. A horizontally encoded instruction allows operation
level parallelism by specifying more than one independent operations and thus in
a single cycle multiple operations can be performed simultaneously. Because an
architecture using horizontal encoding typically requires more instruction word
bits it is sometimes known as a very long instruction word (VLIW) architecture
[150]. These architectures are especially suitable for HNN implementations.
network [47] based on the deterministic annealing network for solving the assignment problem. However, that analog implementation required mapping the massive number of interconnections and programming the parameters. Later Hung and Wang [46] presented the digital realization of the same by mapping it to a one-dimensional systolic array with ring interconnection topology. A scaled-down version was realized using FPGA-based devices. Interestingly, they demonstrate that regularities in the data for the assignment problem could be used to eliminate the need of multiplication and division operations.

Apart from the above, other digital HNN designs also exist. Bagging [154] is a technique for improving classification performance by creating ensembles. Bagging uses random sampling with replacement from the original data set in order to obtain different training sets. It is observed that bagging significantly improves classifiers that are unstable in the sense that small perturbations in the training data may result in large changes in the generated classifier. Bermak and Martinez [6] present a 3D circuit implementation of bagging ensembles for efficient pattern recognition tasks. Individual classifiers within the ensemble are decision trees specified as threshold networks having a layer of threshold logic units (TLUs) followed by combinatorial logic elements. The proposed architecture supports a variable precision computation (4/8/16-bit) and configurable network structure w.r.t. number of networks per ensemble or the number of TLUs and inputs per network.

In self-organizing feature map (SOFM) the capability of calculating the exact equation of the learning rule and the distance required by a PE has a direct bearing on the chip area. In particular, it becomes too large when large number of PEs are to be considered. Rueping et al. [93] present a digital architecture based on the idea that restriction on the learning algorithm may simplify the implementation. In this architecture the Manhattan Distance and a special treatment of the adaptation factor are used to decrease the necessary chip area so that a high number of PEs can be accommodated on a single chip. The hardware is extendable and advantageous to realize map sizes of 10×10 in one chip with only 28 pins. With binary data, even higher performance (greater than 25 GCPS for a 50×50 map) can be achieved.

Recently, Dibazar et al. [43] discuss Texas instrument’s TMS320C6713 DSP Starter Kit (a floating point DSP processor) based implementation of a Dynamic Synapse Neural Network model for acoustic sound recognition in noisy environments. The developed hardware achieves an accuracy of 90% for classification and localization task for gunshot recognition.

4.2. Analog neurochips

Some of early fully developed analog chips include Intel’s ETANN and Synaptic’s Silicon Retina. Intel’s Electrically Trainable Analog Neural Network (ETANN) 80170NX [123] is an elaborate analog chip with 64 fully connected neurons. It is a general-purpose neurochip where analog non-volatile weights are stored on-chip as electrical charge on floating gates, and Gilbert-multiplier synapses provide four-quadrant multiplication. ETANN does not support on-chip learning and only a chip-in-the-loop mode using a host computer is used so that at the end of the learning phase weights could be downloaded on the chip. The chip is reported to achieve a calculation rate of 2 GCPS, accuracy of 4-bits with a 64-bit bus, and 10,240 programmable synapses. ETANN chips can be cascaded to form a network of up to 1024 neurons with up to 81,920 weights, by direct-pin/bus interconnection. The Mod2 Neurocomputer [155] is an early design employing 12 ETANN chips for real-time image processing. Later many other systems utilized these ETANN chips including MBOX II [45], an analog audio synthesizer with 8 ETANN chips.

Competition based ANNs such as Kohonen SOFM often need calculating distances between input vectors and the weights. An analog implementation for an SOFM generally results into a compact circuit block that accurately computes the distances. In early 90s, Churcher et al. [156] presented circuits for calculating Euclidean distance measure. Later, Gopalan and Titus [94] provide an analog VLSI implementation of a wide range of Euclidean distance computation circuit which can be used as part of a high-density hardware implementation of a SOFM.

Liu et al. [35] present a mixed signal CMOS feed-forward chip with on-chip error-reduction hardware for real-time adaptation. The chip was fabricated through MOSIS in Orbit 2 µm process and weights were stored in capacitors targeting oscillating working conditions. The implemented learning algorithm is a genetic random search algorithm, known as Random Weight Change (RWC) algorithm, which does not require a known desired neural-network output for error calculation and is thus suitable for direct feedback control. In experiments, the RWC chip, as a direct feedback controller, could successfully suppress unstable oscillations modeling combustion engine instability in real time. Nonetheless, volatile weight storage remains an issue limiting the possible applications.

Ortiz and Ocasio [157], on the other hand, present a discrete analog hardware model for the morphological neural network, which replaces the classical operations of multiplication and addition by addition and maximum or minimum operations.

Milev and Hristov [34] present an analog-signal synapse model using MOSFETs in a standard 0.35-µm CMOS fabrication process to analyze the effect of the synapse’s inherent quadratic non-linearity on learning convergence and on the optimization of vector direction. The synapse design is then used in a VLSI architecture consisting of 2176 synapses for a finger-print feature extraction application.

Brown et al. [8] describe the implementation of a signal processing circuit for a Continuous-Time Recurrent Neural Network using subthreshold analog VLSI in mixed-mode (current and voltage) approach, where state variables are represented by voltages while neural signals are conveyed as currents. The use of current allows for the accuracy of the neural signals to be maintained over long distances, making this architecture relatively robust and scalable.

Bayraktaroglu et al. [158] discuss—ANNSys—a system for synthesizing analog ANN chips by approximating on-chip training to provide the starting point for “chip-in-the-loop training”. The synthesis system is based on SPICE circuit simulator and a silicon assembler and designed for analog neural networks to be implemented in MOS technology.

4.3. Hybrid neurochips

Hybrid Chips combine digital and analog technologies in an attempt to get the best of both. For example, one can use analog internal processing for speed with weights being set digitally. As an example, consider the hybrid Neuro-Classifier from the Mesa Research Institute at University of Twente [159], which uses 70 analog inputs, six hidden nodes, and one analog output with 5-bit digital weights achieving the feed-forward processing rate of 20 GCPS. The final output has no transfer function, so that multiple chips can be added to increase the number of hidden units. Similarly [10] presents a hardware efficient matrix-vector multiplier architecture for ANNs with digitally stored synapse strengths.
Cortical neurons [160,161] whose major mode of operation is analog can compute reliably even with the precision limitation of analog operations owing to their organization into populations in which a signal at each neuron is restored to an appropriate analog value according to some collective strategy. Douglas et al. [162] describe a hybrid analog-digital CMOS architecture for constructing networks of cortical amplifiers using linear threshold transfer function.

A hybrid architecture with on-chip learning has been presented in [9]. The overall circuit architecture is divided into two main parts with regard to their operating modes, viz., analog and digital. The analog ANN unit executes the neural function processing using a charge based circuit structure. It is composed of a 20 neuron layer, each with 10 bit vector inputs. The winner-takes-all unit is devoted to the task of selecting one neuron as the winner on the criterion of the best degree of match between the stored pixel pattern and the current input vector. On the other hand, the units for error correction, circuit control and clock generation are kept purely digital.

4.4. FPGA based implementations

Reconfigurable FPGAs provide an effective programmable resource for implementing HNNs allowing different design choices to be evaluated in a very short time. They are low cost, readily available, and reconfigurable offering software like flexibility. Partial and online reconfiguration capabilities in the latest generation of FPGAs offer additional advantages. However, the circuit density using FPGAs is still comparably lower and is limiting factors in the implementation of large models with thousands of neurons.

Kraps et al. [30] present an FPGA implementation of a neural network meant for designing a real time hand detection and tracking system applied to video images. Yang and Paindavoine [31] present an FPGA based hardware implemented on an embedded system with 92% success rates of face tracking and identity verification in video sequences.

Maeda and Tada [100] describe an FPGA realization of a pulse density NN using the simultaneous perturbation method [163,164] as the learning scheme. The simultaneous perturbation method is more amenable to a hardware realization than a gradient type learning rule, since the learning rule requires only forward operations of the network to modify weights unlike the BP present in the gradient type rule. Pulse density NN systems are also robust against noisy conditions.

In contrast to Custom VLSI, the FPGAs are readily available at a reasonable cost and have a reduced hardware development cycle. Moreover, FPGA-based systems can be tailored to specific ANN configurations. For example, Gadea et al. [91] present the implementation of a systolic array for a multi-layer perceptron on a Xilinx Virtex XCV400 FPGA of a pipelined on-line BP learning algorithm. Huitzil and Girau [24] map the integrate-and-fire LEGION (Local Excitatory Global Inhibitory Oscillator Network) spiking neural model for image segmentation [165,22] onto Xilinx Virtex XC2V1500FF896-4 device. However, multiplication is bit costly using FPGAs since each synaptic connection in an ANN requires a single multiplier, and this number typically grows as the square of the number of neurons. Mordern FPGAs, e.g., Xilinx® Virtex II Pro [166] with embedded IBM PowerPC cores and Altera's Stratix III [167], though can have 100s of dedicated multipliers.

In a relatively recent work Himavathi et al. [168] have used layer multiplexing technique to implement multi-layer feed-forward networks into Xilinx FPGA XCV400fxq240. The suggested layer multiplexing involves implementing only the layer having the largest number of neurons. A separate control block is designed, which appropriately selects the neurons from this layer to emulate the behavior of any other layer and assigns the appropriate inputs, weights, biases, and excitation function for every neuron of the layer that is currently being emulated in parallel. Each single neuron is implemented as a look-up table. To assess the effectiveness of the design a flux estimator for sensorless drives [169] was used for testing with reported 50% decrease in the number of neurons though adding an speed overhead of 17.7% because of the control block.

Another recent study Rice et al. [170] reports that a FPGA based implementation of a neocortex inspired cognitive model can provide an average throughput gain of 75 times over software implementation on full Cray XD1 supercomputer. They use the hierarchical Bayesian network model based on the neocortex developed by George and Hawkins [171]. Their hardware-accelerated implementation on the Cray XD1 uses Xilinx Virtex II Pro FPGAs with off-chip SRAM memory and software implementation uses 5 dual core 2.0 GHz Opteron processors.

An important problem faced by designers of FPGA based HNNs is to select the appropriate ANN model for a specific problem to be implemented using optimal hardware resources. Simon Jothson and others provide interesting insights in [172] for this purpose. They carried out a comparative analysis of hardware requirements for implementing four ANN models onto FPGA. The selected models include MLP with BP and RBF network as classical models, and two SNN models—leaky integrate and fire (LIF) and spike response model. These models were then analyzed on a benchmark classification problem for FPGA hardware resources. The results of the study suggest that LIF SNN model could be the most appropriate choice for implementation for non-linear classification tasks.

FPGA implementations of stochastic ANN models: Practical hardware implementations of large ANNs critically demand that the circuitry devoted to multiplication is significantly reduced. One way to reduce it is to use bit-serial stochastic computing [173]. This uses relatively long, probabilistic bit-streams, where the numeric value is proportional to the density of “1”s in it. For example, a real number \(r \in [-1,1] \) is represented as a binary sequence such that probability of a bit getting set to 1 is \((r+1)/2 \). The multiplication of two probabilistic bit-streams can be accomplished by a single two-input logic gate. This makes it feasible to implement large, dense, fully parallel networks with fault tolerance. Even though stochastic computation is simple, it may not always be efficient (see [59] for comparison).

Most of the stochastic ANN models have been implemented in hardware using FPGAs [113,114,41,12]. Daalen et al. [113] describe an FPGA based expandable digital architecture with bit serial stochastic computing to carry out the parallel synaptic calculations. Authors discuss that fully connected multi-layered networks can be implemented with time multiplexing using this architecture. FPGAs have also been used to implement stochastic computation with look-up table based architecture for computing AF [114]. Li et al. [41] discuss FPGA implementation of a feed-forward network employing stochastic techniques for computing the non-linear sigmoid AFs. Further it is used to design a neural-network based sensorless control of a small wind turbine system. Nedjah and Mourelle [12] describe and compare the characteristics of two Xilinx VIRTEX-E family based FPGA prototype architectures implementing feed-forward fully connected ANNs with upto 256 neurons. The first prototype used traditional adders and multipliers of binary inputs while the second instead has stochastic representation of the inputs with corresponding stochastic computations. They compare both prototypes in terms of space requirements, network delays, and finally the time \(\times \) area factor. As expected, stochastic representation reduces space requirements to a good extent though resulting networks are slightly slower compared to binary models.
4.5. Other implementations

Szabo et al. [174] suggest a bit-serial/parallel neural network implementation method for pre-trained networks using bit-serial distributed arithmetic for implementing digital filters. Their implementation of a matrix-vector multiplier is based on an optimization algorithm, which utilizes CSD (Canonic Signed Digit) encoding and bit-level pattern coincidences. The resulting architecture can be realized using FPGA or ASIC and can be integrated into automatic neural network design environments. The suggested matrix multiplier structure is useful for both in MLP designs as well as cellular neural networks (CNNs).

4.5.1. Associative neural memories

Basic operation of an Associative Neural Memory (ANM) is to map between two (finite) pattern sets using threshold operation. Palm et al. [175] studied a very simple model of a neural network performing this task efficiently, where the input, output, and connection weights are binary. Ruckert et al. [108,109] thereafter designed VLSI architectures for this model using analog, digital, and mixed signal circuit techniques. Digital architecture is based on a 16-Kbit on-chip static RAM, a neural processing unit, a coding and bit-level pattern coincidences. An FPGA based emulated-digital CNN-UM implementation could achieve 47 times speed up in time. Zarandy et al. present a brief overview of these implementations based upon CNN-UM. Corresponding hardware implementations based upon CNN-UM.

5. CNN implementations

Chua and Yang [181–183] introduced CNN as an regular array of locally interconnected analog processing elements, or cells, operating in parallel, whose dynamic behavior is determined by the cell connectivity pattern (neighborhood extent) and a set of configurable parameters. CNN by its very design is a circuit oriented architecture and is conceptually suitable for hardware implementation. After the inception of CNN, their implementations in hardware have attracted substantial interest covering different types of CNN models differing in interaction type (e.g., linear, non-linear, dynamic, or delay), modes of operation (e.g., dense time versus discrete time, oscillating type versus dynamic), and grid topology (e.g., planar, polygonal, circular etc.). There exist analog [104,106], digitally programmable [103,105], hybrid [38], FPGA [184,29,185,107], as well as optical [15] implementations for CNN. CNN implementations can achieve speeds up to several tera fops and are ideal for the applications which require low power consumption, high processing speed, and emergent computation, e.g., real-time image processing [2]. We will only briefly cover some of the recent representative implementations here. For further details readers may look into the detailed overview [186] and monographs [187,2,188].

Rodriguez-Vazquez et al. [32] discuss ACE16k, a mixed-signal SIMD-CNN ACE (Analog Cellular Engine) chips as a vision system on chip realizing CNN Universal Machine (CNN-UM) [189]. ACE16k is designed using 0.35 μm CMOS technology with 85% analog elements. Its design incorporates several advancements over its predecessor ACE4k chip [190] including the use of local analog memories and ACE-BUS enabling it to process complex spatio-temporal images in parallel through a 32-bit data bus working at 120 MBps with peak processing speed of 330 GOPS. The ACE16k chip consists of an array of 128 × 128 locally connected mixed-signal processing units operating under SIMD mode. Yalcin et al. in [191] discuss the spatio-temporal pattern formation in ACE16k and Carranza et al. [192] present design of a programmable stand-alone system ACE16k-DB for real-time vision pre-processing tasks using ACE16k together with Xilinx XC4028XL FPGA. ACE16k chips have been used in commercial Bi-I [33] speed vision system developed by Analogic Computers Ltd and MTA-SZTAKI. Also there exist many recent topographic, sensory, and Cellular Wave Architectures and corresponding hardware implementations based upon CNN-UM. Zarandy et al. [193] present a brief overview of these implementations. An FPGA based emulated-digital CNN-UM implementation using GAPU (Global Analogic Programming Unit) as discussed by Voroshazi et al. [194] is a recent work in this direction. They discuss design of an extended Falcon architecture using GAPU. Falcon was earlier proposed as a reconfigurable multi-layer FPGA based CNN-UM implementation employing systolic array architecture by Nagy and Szolgy in [195]. In its original design, Falcon could compute result of only one iteration (e.g., only one image in a video sequence) so in [194] a high level embedded control and arithmetic logic block (GAPU) is used which could support several interaction together. Actual design of the GAPU employs Xilinx MicroBlaze architectural. The comparative tests revealed that in comparison to software based implementation using Intel core2 Duo T7200 processor with optimized C+ code, the FPGA based hardware implementation could achieve 47 times speed up in time.

Arena et al. [38,39] discuss design of a CNN-based analog VLSI chip for real-time locomotion control in legged robots. The analog chip core solves the gait generation task whereas digital control modules the behavior to deal with sensory feedback. An experimental six cell
CNN chip is designed using a switched capacitors in CMOS AMS 0.8-μm technology.

One of the more recent works include the design of a stochastic bit-stream CNN model by Rak et al. [13], which is implemented using FPGA. Also Ho et al. [196] suggest design of a CNN simulator using graphics processing unit (GPU) [197] consisting of high performance parallel graphics accelerators, by parallelizing the CNN computations so that they can be executed concurrently.

6. Neuromorphic HNNs

Neuromorphic refers to a circuit that closely emulates the biological neural design. The processing is mostly analog, although outputs can be digital. Examples include Silicon Retina [7] and Synaptic Touchpad [198]. Another important category of neuromorphic HNNs is Pulse Coupled Neural Networks (PCNNs) [99,101]. These have been designed after the mammalian visual system, and further implemented in hardware. Like many other NN models, PCNNs can perform image preprocessing, such as edge finding and segmentation. The time series output is invariant to scaling, rotation and translation. A compact architecture for analog CMOS hardware implementation of voltage-mode PCNNs is presented by Ota and Wilamowski in [99], which shows inherent fault tolerance and high speed compared to its software counterpart.

An important aspect of neuromorphic designs is the address event representation protocol (AER). There has been a considerable effort to create larger neuromorphic neural networks with point-to-point pulse/spike communication between neural assemblies. AER is used to emulate the point-to-point connections for SNNs of considerable size. They are now quite popular in the neuromorphic community. This work was initiated by Mahowald [199] and Mortara [200]. Over the last years AER has been perfected by Boahen [201] and a large AER neuromorphic network system in hardware for visual processing has been presented in Serrano-Gotarredona et al. [202], claimed to be the most complex neuromorphic pulse communication network yet. In a more recent work Bamford et al. [203] discuss design of a distributed and locally reprogrammable address event receiver, which could allow for arbitrarily large axonal fan-out.

Selective attention is a mechanism used to sequentially select and process only relevant subregions of the input space, while suppressing other irrelevant inputs arriving from other regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. Indiveri [141,204] presents a 2-D neuromorphic hardware model called attention chip, which implements a real-time model of selective attention, for sequentially selecting the most salient locations of its inputs space. It is implemented on an analog VLSI chip using spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. Experiments were carried out using a 8 × 8 grid, demonstrating how the chip’s bias parameters could be used to impose different behaviors of the system. Also we should add the recent convolution chip by Serrano-Gotarredona et al. [205], which can implement many classical NN computations, specifically feature-maps.

The silicon retina are an important class of neuromorphic hardware with a potential to have commercial success beyond pure research. The earliest electronic retina was proposed by Fukushima et al. [206] in 1970 itself and was subsequently integrated onto an ASIC by Mahowald [199] in early nineties. Besides spatial contrast/derivative retina, later focus has been turned towards temporal contrast/derivative retina [207,208]. However, unlike the spatial contrast retina they do not communicate with their neighbors to attain a collective computation. Recent and relatively popular studies on the design of a neuromorphic model for mammalian retina include those by Boahen’s group [209–212]. In these studies both outer and inner retina were modeled such that outer retina model performs linear band-pass spatiotemporal filtering and inner retina model performs high-pass temporal filtering and can realize non-linear temporal frequency adaptation as well as contrast gain control [209]. The presented model was fabricated as actual chip having 90 × 60 photoreceptor, 3.5 × 3.3 mm² surface area using 0.35-μm CMOS technology [210]. As authors report, the chip has photoreceptor density only 2.5 times sparser that the human cone density. However, in contrast to actual mammalian retina, such designed retina chip does not respond at high temporal frequencies (10Hz and above) [211].

Another important topic of Neuromorphic hardware are the silicon cochleae. The network aspect is somewhat weak for them, although the sensor nodes do have connections to one neighbor but more in the manner of a processing chain than a network. Initial work in this direction was reported by Lyon and Mead [213] and Lazzaro and Mead [214]. Recent improvements have been reported by Sarapeshkar et al. [215] and Chan et al. [216].

Indiveri et al. [67] present current state of the are in the field of neuromorphic engineering [217] and discuss the challenges for designing cognitive-neuromorphic systems.

6.1. Spiking neural network hardware

Spiking (or pulsed) ANNs (SNNs), a class of ANNs, model neurons on a level relating more closely to biology and have attracted attention in many bio-sensing areas including image processing applications [97] and olfactory sensing [48]. They incorporate computation of membrane potentials, synaptic time delays, and dynamical thresholds, in addition to the prevalent synaptic weighting, postsynaptic summation, static threshold, and saturation. A SNN model synchronizes by taking into account the precise timing of spike events. A noteworthy characteristics of SNNs is that they have been proven to be computationally more powerful than classical ANN models with sigmoidal neurons [218]. However, computing large networks of complex neuron models is a computationally expensive task and leads to longer execution delays even with high-performance workstations [219]. Hardware implementations of a single spiking neuron model has been discussed in the Section 3.3. We next consider relatively recent efforts on designing low power compact VLSI architectures for large scale implementations of SNN models.

Schoenauer et al. [23] present a neuroprocessor, called NeuroPipe-Chip, as part of an accelerator board, which approaches real-time computational requirements for SANNs in the order of 10⁶ neurons. For a simple SNN benchmark network for image segmentation, the simulation of the accelerator suggested nearly two orders of magnitude faster computation time than a 500 MHz Alpha workstation and a performance comparable to dedicated accelerator architecture consisting of 64 high-performance DSPs. The NeuroPipe-Chip comprising 100 K gate equivalents is fabricated in an Alcatel five-metal layer 0.35-μm digital CMOS technology. To improve the speed of computations weight caches are used to accumulate all weighted spikes occurring in one time slot. To further speed up the performance, the NeuroPipe-Chip design was augmented with additional on-chip inhibition unit, which would apply equally distributed negative potential to a large set of spikes. Florian et al. [36] also demonstrate the usefulness of hardware SANNs in designing embedded microcontrollers for autonomous robots which can evolve the ability to move in a small maze without
external support. More recently, Belli et al. [37] report using an FPGA based implementation of SNN for building collaborative autonomous agents.

Ros et al. [220] present a HW/SW codesign approach, where the spike response model for a neuron is implemented in hardware and the network model of these neurons and the learning are implemented in software with a support for an incremental transition of the software components into hardware. Neuronal synapses are modeled as input-driven conductances and various stages of the temporal dynamics of the synaptic integration process are executed in parallel. Multiple PEs process different neurons concurrently. Effectiveness of the proposed architecture is tested with a prototype system using FPGA board and a host computer interacting with each other using PCI bus on a real-time visual data with a time resolution of 100 μs. Similarly Zou et al. [221] also present real-time simulation architecture for networks of Hodgkin–Huxley spiking neurons using a mix of analog circuits and a host computer.

Vogelstein et al. in [222] describe a mixed signal VLSI chip with on-chip learning for emulating larger SNN models. The experimentally designed chip consists of 60 × 40 array of I&F neuron with reconfigurable synaptic connectivity allowing arbitrary number of synaptic connections to exist between neurons. The synaptic connections are actually implemented using digital RAM enabling reconfiguration of these connections and associated parameters (e.g., conductance value, post synaptic address) on-the-fly. The actual neuron and its membrane dynamics are implemented in an analog VLSI using a conductance based modeling. The chip has an area of 9 mm² with 645 μW of power consumption on 10 MCUPS activity. The chip was demonstrated to emulate attractor dynamics observed in the neural activity in rat hippocampal “place cells” [223].

Koickal et al. [224] present a spike-timing based reconfigurable single chip architecture for neuromorphic designs. The presented architecture uses only one type of event block designed as an analog circuit, which can be configured to model the functionality of a leaky I&F neuron, a summing exponential synapse, a spike time dependent learning window, and for adaptively generating a compensating current at the neuron input so that neuron firing synchronizes with the timing of a target signal. The configurable event block uses a programmable capacitor array designed earlier by the same authors in [225] together with an operational transconductor, and a comparator and occupies an area of 0.03 mm².

Spiking models have also received a lot of attention in the context of learning rules. Traditional ANNs process real numbers that are inspired by average spiking frequency of real neurons. A fully represented spike train from a neuron, however, can potentially convey much more information content. Some neurophysiological experiments investigating synaptic change, i.e., learning, for example, indicate that relative spike timing of single spike pairs influences direction and magnitude of change of synaptic efficacy, i.e., average spiking frequencies are insufficient to describe the learning behavior of real neurons. This was implemented in neuromorphic on-chip learning synapses by Hafliger et al. [226] and recently advanced by Fusi et al. [138] and Chicca et al. [227]. The latest publications by these groups [228,229] also describe network experiments with those synapses.

Attempts to realize (multiplier-less) SNN models include works of Chen et al. [230,231] and of Ghani et al. [232]. A recent article by Maguire et al. [63] presents a detailed overview of conventional simulation based approaches to implement SNNs and further details various FPGA based implementations of SNNs.

7. Optical neural networks

In this section we provide a brief overview on optical neural networks (ONNs), designed on the principles of optical computing. Optical technology (see [233]) utilizes the effect of light beam processing that is inherently massively parallel, very fast, and without the side effects of mutual interference. Optical transmission signals can be multiplexed in time, space, and wavelength domains, and optical technologies may overcome the problems inherent in electronics. The results range from the development of special-purpose associative memory systems through various optical devices (e.g., holographic elements for implementing weighted interconnections) to optical neurochips. Optical techniques ideally match with the needs for the realization of a dense network of weighted interconnections.

Optical technology has a number of advantages for making interconnections, specifically with regard to density, capacity and 2D programmability. One of the early ONN design using optical vector matrix product processor or crossbar interconnection architecture is discussed in [234,235]. Similarly a spatial coding method of dealing with input/output patterns as 2D information is used to develop a neural network system with learning capabilities in [111]. However, the lack of efficient optical switches and high capacity erasable optical memories has been the cause of a bottleneck in the growth of ONNs. Typically such optical switch or spatial light modulator is designed as a set of movable mirrors, called a deformable mirror device (DMD), which is inherently difficult to design on large scale.

Hopfield networks are widely used for exemplifying optical implementations. An optical 2D NN has been developed [112] using a liquid-crystal television (LCTV) and a lens array for producing multiple images under incoherent illumination. Multi-layer feedforward/feedback networks have also been optically implemented with the threshold function getting evaluated electronically [95] or approximately realized by optical devices [96]. In the second approach, the architecture employs LCTVs to implement the inputs and the weights, while liquid crystal light valves are used to implement the non-linear threshold [14].

An example of optical neurocomputer is the Caltech “Holographic Associative Memory” presented in [110]. The goal of the system is to find the best match between an input image and a set of holographic images that represent its memory. Neurons are modeled by non-linear optical switching elements (optical transistors) that are able to change their transmittance properties as the brightness of a light beam changes. Weighted interconnections are modeled by holograms, which are able to record and reconstruct the intensity of light rays. A 1 in planar hologram, produced on a tiny photographic film, can fully interconnect 10,000 light sources with 10,000 light sensors making 100 million interconnections. The whole system, consisting of a set of lenses and mirrors, a pinhole array, two holograms and an “optical transistor”, is realized as an optical loop.

As Lange et al. [28] discuss, both electronic and optical technology could be useful to solve problems in real-time image processing applications. They fabricated an optical neurochip for fast analog multiplication with weight storage elements and on-chip learning capability. The chip can hold up to 128 fully interconnected neurons. They have also developed the “artificial retina chip”, a device that can concurrently sense and process images for edge enhancement or for feature extraction. Applications of these optical devices are in the domains of image compression and character recognition.

Silveira [236] presents recent review on various issues and design approaches related to these optoelectronic NN implementations.

Lack of effective programmability is one of the major limitation in optical implementations. Burns et al. [237] describe an optoelectronic design to overcome this limitation using a combination of optics and electronics with high fan-in and temporal multiplexing of the weights. The layered network design consists of electronically controlled optical input layer...
using spatial light modulation with subsequent electronic processing, though the multiplication of input pattern with interconnection weight was still carried out using software. Their design significantly reduced the photo-induced charge leakage of the neuron activations stored dynamically on capacitors.

Tokes et al. discuss in [15] an optical CNN device, also known as Programmable Optical Array/Analogic Computer (POAC), which is based on modified Joint Fourier Transform Correlator and Bacteriorhodopsin as a holographic optical memory. Later Moagar-Poladian and Bulinski [238] presented a type of reconfigurable optical neuron, in which weights can be dynamically changed. Once a weight is set, it is memorized for a period of few days. The optical neuron comprises a photoelectret as the recording medium of the weights and an optical non-linear crystal with transverse Pockels effect. First described in 1906 by the German physicist Friedrich Pockels, Pockels effect is a linear electro-optical effect, in which, the application of an electric field produces a birefringence which is proportional to the field. To achieve, transverse Pockels effect, the electro-optic crystal is used in the transverse mode, i.e., the optic axis is set perpendicular to the direction of propagation of the light. Shortt et al. [239] demonstrate a bipolar matrix vector multiplier based optical implementation of the Kak neural network [240]. For this, the CC4 algorithm was modified on the training phase for implementing N-Parity problem. First proposed by Kak and Tang [241]. CC4 is a corner classification training algorithm for three-layered feedforward neural networks. A very recent work in this direction include optical implementation of SNN using a thin film of electron-trapping material by Pashaie and Farhat [242].

Llata and Rivera [243,244,16] have proposed design of vision system based upon a CMOS image sensor and a hybrid optoelectronic hardware architecture called optical broadcast neural network (OBNN). An OBNN processor classifies input patterns using Hamming classification using a set of reference patterns. The input signals are sent in their temporal order to an array of PEs for computing weight updates by means of an global optical broadcasting, thus taking advantage of fast optical communication as well as electronic computational processing. The downside of the architecture is that it is sensitive to rotation, translation, and scaling of the input images. To overcome these limitations, recently in [21], they extend the design by introducing PCNN preprocessor stage, which converts an 2D input image into a temporal pulsed pattern. These pulses are then applied as inputs to the OBNN processor. The combined system is reported to achieve the rate of 10^4 classifications per second on binary input images of size 128×128 pixels.

Articles by Yu and Uang [245] and by Ahmed et al. [246] are interesting reviews on the later advancements in the design and implementation of ONNs. Ref. [246] has additional discussion on the design of a portable POAC and optical template library.

8. Conclusions and discussion

HNN research and applications have witnessed a slow and incremental progress in last two decades. Even though ANN hardware has been there for more than last two decades, the rapid growth in general purpose hardware (microprocessors, DSPs, etc.) did not let most of these implementations to outperform to the extent of becoming commercially successful. Nonetheless, novel application areas have steadily started appearing, e.g., embedded microcontroller for autonomous robots [36,247], autonomous flight control [248,249], proposed silicon model of the cerebral cortex—neurogrid [250] (also see [251]), and silicon retina [212,211]. In recent years several special issues dedicated to HNN implementations have been published [252–254] as well as a steady stream of Ph.D theses have appeared [255–257] indicating the growing interest in the area.

However, in spite of the presence of expressive high-level hardware description languages and compilers, efficient neural-hardware designs still demand ingenious ways to optimally use the available resources for achieving high speed and low power dissipation. Judicious mapping of ANN models onto parallel architectures, entailing efficient computation and communication, is thus a key step in any HNN design and there is a need to design tools for automatically translating high level ANN models onto hardware [258, Section 5.5].

As noted in [259], digital neurohardware tends to be more algorithm specific requiring a good knowledge about algorithms as well as system design that eventually results into a high time-to-market as compared to conventional hardware. In this respect general-purpose hardware seems more user-friendly, offering more flexibility with uniform programming interfaces, and can therefore profit more from advances in technology and architectural revisions. However, many of the applications involving ANNs often demand computational capabilities exceeding of workstations or personal computers available today. For example, a typical real-time image processing task may demand 10 teraflops, which is well beyond the current capacities of PCs or workstations today. In such cases neurohardware appears attractive choice and can provide a better cost-to-performance ratio even when compared to supercomputers because many aspects of user friendliness vanish for the supercomputers which are also relatively expensive.

Since currently many ANN applications use networks with less than 10^n neurons and/or inputs and only need occasional training, software simulation is usually found to be sufficient in such situations. But when ANN algorithms develop to the point where useful things can only be done with $10^4–10^6$ neurons and 10^{14} of synapses between them [260,261], high performance neural hardware will become essential for practical operations. It is important to add that such large scale neural network hardware designs might not be a distant reality as is apparent from the recent work of Schennel et al. on wafer-scale integration of large SNN models [262,263].

It is observed that presently it is not always possible to exploit the entire parallelism inherent in the ANN topology along with a good cost-performance ratio, mainly due to the cost associated with the implementation of the numerous interconnections, control and mapping involved. In this scenario, optical implementations add a different dimension. Multi-Chip Modules or Wafer-Scale Integration hold further promise for implementing such large networks. IBM cell processor [264] with nine processor cores or its recent variant QS22 PowerXCell 8i [265] with their powerful vector processing capabilities hold good promise for highly parallel large scale ANN implementations or their fast emulations for comparative analysis. Also using 3D VLSI packaging technology [266], large number of synaptic connection could possibly be realized in small space. 3D VLSI classifier [6] as discussed before in Section 4.1 is an example at hand.

CMOS/nanowire/nanodevice ("CMOL") technology [267,268], which combines both CMOS and nanotechnology, is one of the important emerging technologies with high potential for large scale HNN implementations. The basic idea of CMOL circuits is to combine the advantages of CMOS technology including its flexibility and high fabrication yield with the high potential density of molecular-scale two-terminal nanodevices. Neuro-
morphic Mixed-Signal CMOL circuits (known as “CrossNets”) [269–273] are the first results of an active research by K. Likharev’s Nanotechnology Research Group at Stony Brook University. In a “CrossNet”, CMOS subsystem realizes the neuron core, whereas crossbar nanowires play the roles of axons and dendrites (connections), and crosspoint latching switches serve as elementary (binary-weight) synapses enabling very high cell connectivity (e.g., 10⁸) in quasi-2D electronic circuits.

Molecular technology is another relatively new approach for possible hardware implementation. It combines protein engineering, biosensors, and polymer chemistry in the efforts to develop a molecular computer [274]. The computation uses the physical recognition ability of large molecules, like proteins, which can change their shape depending on the chemical interactions with other molecules. Molecular computing is still in its infancy. The major problem is to develop appropriate technology that would allow for construction of bio equivalents of transistors. However, inherently parallel generalization and adaptation capabilities perfectly match the needs of neural networks implementations. Research in this direction appears promising [275,276] and, in the future, molecular computers with neural architectures appears to have a potential to become a reality. Dan Ventura [277] presents an interesting discussion on the possibility designing quantum neural computing devices utilizing quantum entanglement effects. In a recent work Alibart et al. [278] report feasibility of designing a hybrid nanoparticle-organic device, a nanoparticle organic memory FET, which uses the nanoscale capacitance of the nanoparticles and the transconductance gain of the organic transistor to mimic the short-term plasticity of a biological synapse.

HNN models hopefully will have the respected place in coming years when industry will face demands imposed by ubiquitous computing with learning and autonomous decision making capabilities, e.g., autonomous robotics and assistive technologies. These applications demand dealing with large amounts of real-time multimedia data from interacting environment, using lightweight hardware with strict power constraints, without letting the computational efficiencies go down. The DARPA initiative [261]—“Systems of Neuromorphic Adaptive Plastic Scalable Electronics”—towards building cognitive-neuromorphic systems [67] is indicative of such emerging directions.

References

Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 2006, pp. 1511–1517.

D. Anguita, I. Baturone, J. Miller (Eds.), Special issue on hardware implementa-

D. Braendler, Implementing neural hardware with on chip training on field programmable gate arrays, PhD. Thesis, Swinburne University of Technology, Melbourne, Australia, 2002.

