Why types? (Part 1)

1. Catch "simple" mistakes early, even for untested code
 - Example: "if" applied to "mkpair"
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., x v)
 - Ensure execution never gets to a "meaningless" state
 - But "meaningless" depends on the semantics
 - Each PL typically makes some things type errors (again being conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
 - Clients can’t break invariants
 - Can enforce encapsulation without static types, but types are a particularly nice way

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don’t have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
 - Have symbol lookup depend on operands’ types
 - Only modestly interesting semantically
 - Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
 - Often via a "type-and-effect" system
 - Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you’re checking
 - Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)
Plan for the next few weeks

- Simply typed λ calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations

- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Omitted: Type inference

What is a type system?

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgment for classifying programs
 - E.g., $e_1 + e_2$ has type int if e_1, e_2 have type int (else no type)
- A sound (?) abstraction of computation
 - E.g., if $e_1 + e_2$ has type int, then evaluation produces an int (with caveats!)
- Fairly syntax directed
 - Non-example (?): e terminates within 100 steps
- Particularly fuzzy distinctions with abstract interpretation
 - Possible topic for a later lecture
 - Often a more natural framework for flow-sensitive properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers

- Later lecture: Typed PLs are like proof systems for logics

Adding constants

Enrich the Lambda Calculus with integer constants:

- Not strictly necessary, but makes types seem more natural

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e\ e \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

No new operational-semantics rules since constants are values

We could add $+$ and other primitives

- Then we would need new rules (e.g., 3 small-step for $+$)
- Alternately, parameterize “programs” by primitives: $\lambda x.\ plus,\ \lambda x.\ times$, ... e
 - Like Pervasives in OCaml
 - A great way to keep language definitions small

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?

- Definition: e is stuck if e is not a value and there is no e' such that $e \rightarrow e'$
- Definition: e can get stuck if there exists an e' such that $e \rightarrow^* e'$ and e' is stuck
 - In a deterministic language, e “gets stuck”

Most people don’t appreciate that stuckness depends on the operational semantics

- Inherent given the definitions above

What’s stuck?

Given our language, what are the set of stuck expressions?

- Note: Explicitly defining the stuck states is unusual

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e\ e \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

\[(\lambda x. e)\ v \rightarrow e[v/x]\]

\[
\begin{align*}
e_1 \rightarrow e'_1 & \quad e_2 \rightarrow e'_2 \\
v_1 e_2 \rightarrow v e'_2
\end{align*}
\]

(Hint: The full set is recursively defined.)

\[
S ::= x \mid c\ v \mid S\ e \mid v\ S
\]

Note: Can have fewer stuck states if we add more rules

- Example: $
 \begin{array}{c}
 c\ v \\
 \rightarrow
 v
 \end{array}$
- In unsafe languages, stuck states can set the computer on fire

Soundness and Completeness

A type system is a judgment for classifying programs

- “accepts” a program if some complete derivation gives it a type, else “rejects”

A sound type system never accepts a program that can get stuck

- No false negatives

A complete type system never rejects a program that can’t get stuck

- No false positives

It is typically undecidable whether a stuck state can be reachable

- Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete
- We’ll choose soundness, try to reduce false positives in practice
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \]

\[\vdash c : \text{int} \]

\[\vdash e_1 e_2 : \text{int} \]

1. NO: can get stuck, e.g., \((\lambda x. x) 3\)
2. NO: too restrictive, e.g., \((\lambda x. x) (\lambda y. y)\)
3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y) 3\)

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to classify functions using argument and result types

For (1): \(\Gamma ::= \cdot \mid \Gamma, x : \tau \) and \(\Gamma \vdash e : \tau\)
 - Require whole program to type-check under empty context.

For (2): \(\tau ::= \text{int} \mid \tau \rightarrow \tau\)
 - An infinite number of types:
 \(\text{int} \rightarrow \text{int} \rightarrow \text{int} \rightarrow \ldots\)

Concrete syntax note: \(\rightarrow\) is right-associative, so \(\tau_1 \rightarrow \tau_2 \rightarrow \tau_3\) is \(\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)\)

STLC Type System

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash c : \text{int} \]

\[\Gamma \vdash x : \Gamma(x) \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

\[\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \]

\[\Gamma \vdash e_2 : \tau_1 \]

\[\Gamma \vdash e_1 e_2 : \tau_1 \]

The function-introduction rule is the interesting one...

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Where did \(\tau_1\) come from?
 - Our rule “inferred” or “guessed” it
 - To be syntax directed, change \(\lambda x. e \) to \(\lambda x : \tau. e\) and use that \(\tau\)

Can think of “adding \(x\)” as shadowing or requiring \(x \not\in \text{Dom(}\Gamma\text{)}\)
 - Systematic renaming (\(\alpha\)-conversion) ensures \(x \not\in \text{Dom(}\Gamma\text{)}\) is not a problem

Always restrictive

Whether or not a program “gets stuck” is undecidable:
 - If \(e\) has no constants or free variables, then \(e\) \((3, 4)\) or \(e\) gets stuck if and only if \(e\) terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”
 - Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk
 - Make “false positives” (rejecting safe program) rare enough
 - Have compile-time resources for “fancy” type systems
 - Make workarounds for false positives convenient enough
How does STLC measure up?

So far, STLC is sound:
- As language dictators, we decided c v and undefined variables were “bad” meaning neither values nor reducible
- Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:
- In practice, just too often that it prevents safe and natural code reuse
- More fundamentally, it’s not even Turing-complete
 - Turns out all (well-typed) programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
 - That’s okay: We will add more constructs and typing rules

Type Soundness

We will take a syntactic (operational) approach to soundness/safety
- The popular way since the early 1990s

Theorem (Type Safety): If $\cdot \vdash e : \tau$ then e diverges or $e \rightarrow^n v$ for an n and v such that $\cdot \vdash v : \tau$
- That is, if $\cdot \vdash e : \tau$, then e cannot get stuck

Proof: Next lecture