Where we are

- Done: OCaml tutorial, "IMP" syntax, structural induction
- Now: Operational semantics for our little "IMP" language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Review

IMP's abstract syntax is defined inductively:

\[
\begin{align*}
 s &::= \text{skip} | x := e | s; s | \text{if } e s s | \text{while } e s \\
 e &::= c | x | e + e | e \cdot e
\end{align*}
\]

We haven't yet said what programs mean! (Syntax is boring)

Encode our "social understanding" about variables and control flow

Informal idea

Given \(e \), what \(c \) does \(e \) evaluate to?

\[
\begin{align*}
 1 + 2 &\quad \text{or} \quad x + 2
\end{align*}
\]

It depends on the values of variables (of course)

Use a heap \(H \) for a total function from variables to constants

- Could use partial functions, but then there is no \(c \)

We'll define a relation over triples of \(H, e, \) and \(c \)

- Will turn out to be function if we view \(H \) and \(e \) as inputs and \(c \) as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps

\[
H ::= \cdot \mid H, x \mapsto c
\]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

- Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements

- For expression evaluation, "we are given an \(H \)"

Outline

- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 6. Metatheory: Proofs about the semantics

- Then semantics for statements
 - ...

Boyana Norris
2015
Derivations

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0 \)
- Let \(R_i \) be \(R_{i-1} \) union all \(H ; e \downarrow c \) such that we can instantiate some inference rule to have conclusion \(H ; e \downarrow c \) and all hypotheses in \(R_{i-1} \)
 - So \(R_i \) is all triples at the bottom of height-\(j \) complete derivations for \(j \leq i \)
- \(R_\infty \) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty \) is the smallest relation closed under the inference rules

The judgment

We will write: \(H \vdash e \downarrow c \)

to mean, “\(e \) evaluates to \(c \) under heap \(H \)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \downarrow c \) to follow PL convention and to distinguish it from other relations

We can write: \(\cdot, x \mapsto 3 ; x + y \downarrow 3 \), which will turn out to be true
(this triple will be in the relation we define)

Or: \(\cdot, x \mapsto 3 ; x + y \downarrow 6 \), which will turn out to be false
(this triple will not be in the relation we define)

Inference rules

\[
\begin{align*}
\text{CONST} & : & H ; c \downarrow c & \quad \text{VAR} & : & H ; x \downarrow H(x) \\
\text{ADD} & : & H ; e_1 \downarrow c_1 & \quad \text{MULT} & : & H ; e_1 \downarrow c_1 \\
& & H ; e_2 \downarrow c_2 & & H ; e_1 * e_2 \downarrow c_1 * c_2 \\
\end{align*}
\]

Example instantiation:

\[
\cdot, y \mapsto 4 ; 3 \downarrow 7 \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 \\
\cdot, y \mapsto 4 ; (3 + y) \downarrow 12
\]

Instantiates:

\[
\begin{align*}
\text{ADD} & : & H ; e_1 \downarrow c_1 & \quad \text{MULT} & : & H ; e_1 \downarrow c_1 \\
& & H ; e_2 \downarrow c_2 & & H ; e_1 * e_2 \downarrow c_1 * c_2 \\
\end{align*}
\]

with

\[
H = \cdot, y \mapsto 4 \\
e_1 = (3 + y) \\
c_1 = 7 \\
e_2 = 5 \\
c_2 = 5
\]

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

\[
\begin{align*}
\cdot, y \mapsto 4 ; 3 \downarrow 3 & \\
\cdot, y \mapsto 4 ; 3 \downarrow 7 & \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 &
\end{align*}
\]

By definition, \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root

Instantiating rules

Example instantiation:

\[
\begin{align*}
\cdot, y \mapsto 4 & \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 & \\
\cdot, y \mapsto 4 ; (3 + y) \downarrow 12 &
\end{align*}
\]

Or:

\[
\begin{align*}
\cdot, x \mapsto 3 ; 3 \downarrow 3 & \\
\cdot, y \mapsto 4 ; y \downarrow 4 & \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 &
\end{align*}
\]

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0 \)
- Let \(R_i \) be \(R_{i-1} \) union all \(H ; e \downarrow c \) such that we can instantiate some inference rule to have conclusion \(H ; e \downarrow c \) and all hypotheses in \(R_{i-1} \)
 - So \(R_i \) is all triples at the bottom of height-\(j \) complete derivations for \(j \leq i \)
- \(R_\infty \) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty \) is the smallest relation closed under the inference rules
Some theorems

- Progress: For all H and e, there exists a c such that $H; c \downarrow c$
- Determinacy: For all H and e, there is at most one c such that $H; e \downarrow c$

We rigged it that way... what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e.

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

- If it terminates

We could define $H_1; s \downarrow H_2$

- Would be a partial function from H_1 and s to H_2
- Works fine; could be a homework problem

Instead we'll define a "small-step" semantics and then "iterate" to "run the program"

$$H_1; s_1 \rightarrow H_2; s_2$$

Statement semantics

$H_1; s_1 \rightarrow H_2; s_2$

Statement semantics cont’d

What about while e s (do s and loop if $e > 0$)?

$$H; e \rightarrow H; if \ e \ if \ (s; while \ e \ s) \ skip$$

Many other equivalent definitions possible

Example program execution

$x := 3; (y := 1; \text{while } x (y := y * x; x := x−1))$

Let’s write some of the state sequence. You can justify each step with a full derivation. Let $s = (y := y * x; x := x−1)$.

- $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$
 - $x := 3; y := 1; \text{while } x s$

Program semantics

Defined $H; s \rightarrow H'; s'$, but what does "s" mean/do?

Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \ldots$

with each step justified by a complete derivation using our single-step statement semantics

Let $H_1; s_1 \rightarrow^n H_2; s_2$ mean "becomes after n steps"

Let $H_1; s_1 \rightarrow^* H_2; s_2$ mean "becomes after 0 or more steps"

Pick a special "answer" variable ans

The program s produces c if $\cdot; s \rightarrow^* H; s$ and $H(ans) = c$

Does every s produce a c?
Continued...

\[x \mapsto 3, y \mapsto 1; \text{while } x \]
\[x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \text{while } x \]
\[\ldots, y \mapsto 3, x \mapsto 2; \text{if } x (s; \text{while } x) \text{ skip} \]
\[\ldots \]
\[\ldots, y \mapsto 6, x \mapsto 0; \text{skip} \]

Where we are

Defined \(H ; e \downarrow c \) and \(H ; s \rightarrow H'; s' \) and extended the latter to give \(s \) a meaning

- The way we did expressions is 'large-step operational semantics'
- The way we did statements is 'small-step operational semantics'
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence
- But we defined IMP to have no errors
- And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by “running” it

Example: Our last program terminates with \(x \) holding 0

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[s \rightarrow^n H ; \text{skip} \]
cannot be derived

Example: \textbf{while 1 skip}

By induction on \(n \), but requires a \textit{stronger induction hypothesis}

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \(H \) and \(s \) have no negative constants and
\[H ; s \rightarrow^* H' ; s' \], then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H; (s_1; s_2) \) terminates.