Finally, some formal PL content

For our first formal language, let's leave out functions, objects, records, threads, exceptions, ...

What's left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

"A program is a statement s, which is defined as follows"

$$
\begin{align*}
 s & ::= \text{skip} | x := e | s ; s | \text{if } e s s | \text{while } e s \\
 e & ::= c | x | e + e | e * e \\
 (c & \in \{ \ldots, -2, -1, 0, 1, 2, \ldots \}) \\
 (x & \in \{ x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots \})
\end{align*}
$$

Syntax Definition

$s ::= \text{skip} | x := e | s ; s | \text{if } e s s | \text{while } e s$

e $::= c | x | e + e | e * e$

Blue is metanotation: ::= for “can be a” and | for “or”

Metavariables represent “anything in the syntax class”

By abstract syntax, we mean that this defines a set of trees
- Node has some label for “which alternative”
- Children are more abstract syntax (subtrees) from the appropriate syntax class

Examples

$s ::= \text{skip} | x := e | s ; s | \text{if } e s s | \text{while } e s$

e $::= c | x | e + e | e * e$

Comparison to strings

Type exp = Const of int | Var of string
- Add of exp * exp | MUlt of exp * exp

type stmt = Skip | Assign of string * exp | Seq of stmt * stmt
- If of exp * stmt + stmt | While of exp * stmt

If(Var("x"), Skip, Seq(Assign("y", Const 42), Assign("x", Var "y")))
Seq(If(Var("x"), Skip, Assign("y", Const 42)), Assign("x", Var "y"))

Very similar to trees built with ML datatypes
- ML needs “extra nodes” for, e.g., “c can be a c”
- Also pretending ML’s int is an integer

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if $x \text{ skip } y := 42 ; x := y$

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation
- Trees are our “truth” with strings as a “convenient notation”
 if $x \text{ skip } (y := 42 ; x := y$ versus (if $x \text{ skip } y := 42$) ; $x := y$
Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it's ever unclear what tree we mean

Inductive definition

$s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s$

e ::= c \mid x \mid e + e \mid e * e

Let $E_0 = \emptyset$.

For $i > 0$, let E_i be E_{i-1} union “expressions of the form c, x, $e_1 + e_2$, or $e_1 * e_2$ where $e_1, e_2 \in E_{i-1}$.”

Let $E = \bigcup_{i \geq 0} E_i$.

The set E is what we mean by our compact metanotation

To get it: What set is E_1? E_2?
Could explain statements the same way: What is S_1? S_2? S?

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let's get the idea of proving things carefully...

Our First Theorem

All we have is syntax (sets of abstract-syntax trees), but let's get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider $e = 1 + (2 + 3)$. Showing $e \in E_3$ suffices because $E_3 \subseteq E$. Showing $2 + 3 \in E_2$ and $1 \in E_2$ suffices...

PL-style proof: Consider $e = 1 + (2 + 3)$ and definition of E.

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on $i > 0$, for all $e \in E_i$, e has ≥ 1 constant or variable.

- **Base:** $i = 1$ implies $E_i = c, x$, which has at least one constant or variable.
- **Inductive:** $i > 1$. Consider arbitrary $e \in E_i$ by cases:
 - $e \in E_{i-1}$...
 - $e = c$...
 - $e = x$...
 - $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1}$...
 - $e = e_1 \ast e_2$ where $e_1, e_2 \in E_{i-1}$...

A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- c ...
- x ...
- $e_1 + e_2$...
- $e_1 \ast e_2$...

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and more convenient in PL.