CIS 624: Structure of Programming Languages

Lecture 2 — Syntax

Boyana Norris
2016
Finally, some formal PL content

For our first *formal language*, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common *metalanguage*:

“A program is a statement s, which is defined as follows”

\[
\begin{align*}
s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ } s \text{ } s \mid \text{while } e \text{ } s \\
e & ::= c \mid x \mid e + e \mid e \ast e \\
(c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots \}) \\
(x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]
Syntax Definition

\[
s ::= \text{skip} \mid x ::= e \mid s ; s \mid \text{if } e \; s \; s \mid \text{while } e \; s
\]

\[
e ::= c \mid x \mid e + e \mid e \ast e
\]

\((c \in \{\ldots, -2, -1, 0, 1, 2, \ldots \})\)

\((x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})\)

- **Blue** is metanotation: ::= for “can be a” and | for “or”
- **Metavariables** represent “anything in the syntax class”
- By *abstract syntax*, we mean that this defines a set of trees
 - Node has some label for “which alternative”
 - Children are more abstract syntax (subtrees) from the appropriate syntax class
Examples

\[s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e s s \mid \text{while } e s \]
\[e ::= c \mid x \mid e + e \mid e \ast e \]
Comparison to ML

\[
\text{If}(\text{Var("x")}, \text{Skip}, \text{Seq}(\text{Assign("y", Const 42)}, \text{Assign("x", Var "y"))})
\]
\[
\text{Seq}(\text{If}(\text{Var("x")}, \text{Skip}, \text{Assign("y", Const 42)}), \text{Assign("x", Var "y"))})
\]

Very similar to trees built with ML datatypes

- ML needs “extra nodes” for, e.g., “e can be a c”
- Also pretending ML’s int is an integer
Comparison to strings

We are used to writing programs in *concrete syntax*, i.e., strings

That can be *ambiguous*: \(\text{if } x \text{ skip } y := 42 ; x := y \)

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

- Trees are our “truth” with strings as a “convenient notation”

\(\text{if } x \text{ skip } (y := 42 ; x := y) \) versus \((\text{if } x \text{ skip } y := 42) ; x := y\)
Last word on concrete syntax

Converting a string into a tree is *parsing*

Creating concrete syntax such that parsing is unambiguous is one challenge of *grammar design*

▶ Always trivial if you require enough parentheses or keywords
 ▶ Extreme case: LISP, 1960s; Scheme, 1970s
 ▶ Extreme case: XML, 1990s

▶ Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

▶ Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean
Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e s s \mid \text{while } e s \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

- Let \(E_0 = \emptyset \)
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c \), \(x \), \(e_1 + e_2 \), or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”
- Let \(E = \bigcup_{i \geq 0} E_i \)

The set \(E \) is what we mean by our compact metanotation
Inductive definition

\[s ::= \text{skip} \mid x ::= e \mid s; s \mid \text{if } e s s \mid \text{while } e s \]

\[e ::= c \mid x \mid e + e \mid e * e \]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c \), \(x \), \(e_1 + e_2 \), or \(e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?
Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

[Comic: Prove it! - By Nansclark]

As you can clearly see...

The proof is trivial.

Proof by Vigorous Hand-waving

Proof by Intimidation

The details are easily supplied.

The proof will be shown later in the course.

Proof by Omission

Proof by Deferral
Review of Mathematical Induction

A proof by induction that the property $P(n)$ holds for $n \in \mathbb{N}$ involves these steps:

▶ Prove directly that P is correct for the initial value of n (for most examples you will see this is zero or one). This is called the base case.

▶ Assume for some value k that $P(k)$ is correct. This is called the induction hypothesis (IH). We will now prove directly that $P(k) \Rightarrow P(k + 1)$. That means prove directly that $P(k + 1)$ is correct by using the fact that $P(k)$ is correct. This is called the induction step.
Our First Theorem

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on $i > 0$, for all $e \in E_i$, e has ≥ 1 constant or variable.

- **Base**: $i = 1$ implies $E_i = c, x$, which has at least one constant or variable.
- **Inductive**: $i > 1$. Consider arbitrary $e \in E_i$ by cases:
 - $e \in E_{i-1}$...
 - $e = c$...
 - $e = x$...
 - $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1}$...
 - $e = e_1 \ast e_2$ where $e_1, e_2 \in E_{i-1}$...
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) \(e \). Cases:

- \(c \ldots \)
- \(x \ldots \)
- \(e_1 + e_2 \ldots \)
- \(e_1 * e_2 \ldots \)

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL