Graduate Programming Languages:
Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
\begin{align*}
 e & ::= c \mid \lambda x.\ e \mid x \mid e\ e \\
 v & ::= c \mid \lambda x.\ e \\
 \tau & ::= \text{int} \mid \tau \rightarrow \tau \\
 \Gamma & ::= \cdot \mid \Gamma, x: \tau
\end{align*}
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
\begin{align*}
 e & \rightarrow e' \\
 \text{E-Apply} & \quad (\lambda x.\ e)\ v \rightarrow e[v/x] \\
 \text{E-App1} & \quad e_1 \to e'_1 \\
 \text{E-App2} & \quad e_2 \to e'_2 \\
 v\ e_1\ e_2 & \rightarrow v\ e'_1\ e'_2
\end{align*}
\]

Typing Rules (a.k.a. Static Semantics)

\[
\begin{align*}
 \Gamma & \vdash e : \tau \\
 \text{T-Const} & \quad \Gamma \vdash c : \text{int} \\
 \text{T-Var} & \quad \Gamma \vdash x : \Gamma(x) \\
 \text{T-Fun} & \quad \Gamma, x : \tau_1 \vdash e : \tau_2 \quad x \notin \text{Dom}(\Gamma) \\
 \text{T-App} & \quad \Gamma \vdash \lambda x.\ e : \tau_1 \rightarrow \tau_2 \\
 & \quad \Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
 & \quad \Gamma \vdash e_2 : \tau_2 \\
 & \quad \Gamma \vdash e_1\ e_2 : \tau_1
\end{align*}
\]
Type Soundness

Theorem (Type Soundness). If \(\vdash e : \tau \) and \(e \rightarrow^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \).

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach \(e' \) from \(e \) establishes that \(\vdash e' : \tau \). Then the Progress Theorem ensures \(e' \) is a value or can step to some \(e'' \).

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If \(\vdash v : \tau \), then

i. If \(\tau \) is \texttt{int} , then \(v \) is a constant, i.e., some \(c \).

ii. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then \(v \) is a lambda, i.e., \(\lambda x. e \) for some \(x \) and \(e \).

Canonical Forms. The proof is by inspection of the typing rules.

i. If \(\tau \) is \texttt{int} , then the only rule which lets us give a value this type is T-CONST.

ii. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then the only rule which lets us give a value this type is T-FUN.

Theorem (Progress). If \(\vdash e : \tau \), then either \(e \) is a value or there exists some \(e' \) such that \(e \rightarrow e' \).

Progress. The proof is by induction on (the height of) the derivation of \(\vdash e : \tau \), proceeding by cases on the bottommost rule used in the derivation.

T-CONST \(e \) is a constant, which is a value, so we are done.

T-VAR Impossible, as \(\Gamma \) is \(\cdot \).

T-FUN \(e \) is \(\lambda x. e' \), which is a value, so we are done.

T-APP \(e \) is \(e_1 e_2 \).

By inversion, \(\vdash e_1 : \tau' \rightarrow \tau \) and \(\vdash e_2 : \tau' \) for some \(\tau' \).

If \(e_1 \) is not a value, then \(\vdash e_1 : \tau' \rightarrow \tau \) and the induction hypothesis ensures \(e_1 \rightarrow e'_1 \) for some \(e'_1 \). Therefore, by E-App1, \(e_1 e_2 \rightarrow e'_1 e_2 \).

Else \(e_1 \) is a value. If \(e_2 \) is not a value, then \(\vdash e_2 : \tau' \) and our induction hypothesis ensures \(e_2 \rightarrow e'_2 \) for some \(e'_2 \). Therefore, by E-App2, \(e_1 e_2 \rightarrow e_1 e'_2 \).

Else \(e_1 \) and \(e_2 \) are values. Then \(\vdash e_1 : \tau' \rightarrow \tau \) and the Canonical Forms Lemma ensures \(e_1 \) is some \(\lambda x. e' \). And \((\lambda x. e') e_2 \rightarrow e'[e_2/x] \) by E-Apply, so \(e_1 e_2 \) can take a step.
Theorem (Preservation). If \(\vdash e : \tau \) and \(e \rightarrow e' \), then \(\vdash e' : \tau \).

We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where \(\Gamma \) is \(\cdot \), but proving the Substitution Lemma itself requires the stronger induction hypothesis using any \(\Gamma \).

Lemma (Substitution). If \(\Gamma, x: \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If \(\Gamma \vdash e : \tau \) and \(x \not\in \text{Dom}(\Gamma) \), then \(\Gamma, x: \tau' \vdash e : \tau \).

Lemma (Exchange). If \(\Gamma, x: \tau_1, y: \tau_2 \vdash e : \tau \) and \(y \neq x \), then \(\Gamma, y: \tau_2, x: \tau_1 \vdash e : \tau \).

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of \(\Gamma, x: \tau' \vdash e : \tau \). There are four cases. In all cases, we know \(\Gamma \vdash e' : \tau' \) by assumption.

T-Const \(e \) is \(c \), so \(c[e'/x] \) is \(c \). By T-Const, \(\Gamma \vdash c : \text{int} \).

T-Var \(e \) is \(y \) and \(\Gamma, x: \tau' \vdash y : \tau \).

If \(y \neq x \), then \(y[e'/x] \) is \(y \). By inversion on the typing rule, we know that \((\Gamma, x: \tau')(y) = \tau \). Since \(y \neq x \), we know that \(\Gamma(y) = \tau \). So by T-Var, \(\Gamma \vdash y : \tau \).

If \(y = x \), then \(y[e'/x] \) is \(e' \). \(\Gamma, x: \tau' \vdash \Gamma : \tau \), so by inversion, \((\Gamma, x: \tau')(x) = \tau \), so \(\tau = \tau' \). We know \(\Gamma \vdash e' : \tau' \), which is exactly what we need.

T-App \(e \) is \(e_1 e_2 \), so \(e[e'/x] \) is \((e_1[e'/x])(e_2[e'/x]) \).

We know \(\Gamma, x: \tau' \vdash e_1 e_2 : \tau_1 \), so, by inversion on the typing rule, we know \(\Gamma, x: \tau' \vdash e_1 : \tau_2 \) and \(\Gamma, x: \tau' \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

Therefore, by induction, \(\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1 \) and \(\Gamma \vdash e_2[e'/x] : \tau_2 \).

Given these, T-App lets us derive \(\Gamma \vdash (e_1[e'/x])(e_2[e'/x]) : \tau_1 \).

So by the definition of substitution, \(\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1 \).

T-Fun \(e \) is \(\lambda y. e_b \), so \(e[e'/x] \) is \(\lambda y. (e_b[e'/x]) \).

We can \(\alpha \)-convert \(\lambda y. e_b \) to ensure \(y \not\in \text{Dom}(\Gamma) \) and \(y \neq x \).

We know \(\Gamma, x: \tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2 \), so, by inversion on the typing rule, we know \(\Gamma, x: \tau', y: \tau_1 \vdash e_b : \tau_2 \).

By Exchange, we know that \(\Gamma, y: \tau_1, x: \tau' \vdash e_b : \tau_2 \).

By Weakening, we know that \(\Gamma, y: \tau_1 \vdash e' : \tau' \).

We have rearranged the two typing judgments so that our induction hypothesis applies (using \(\Gamma, y: \tau_1 \) for the typing context called \(\Gamma \) in the statement of the lemma), so, by induction, \(\Gamma, y: \tau_1 \vdash e_b[e'/x] : \tau_2 \).

Given this, T-Fun lets us derive \(\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2 \).

So by the definition of substitution, \(\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2 \).
Theorem (Preservation). If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-Const e is c. This case is impossible, as there is no e' such that $c \rightarrow e'$.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is $\lambda x. e_b$. This case is impossible, as there is no e' such that $\lambda x. e_b \rightarrow e'$.

T-App e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2.

There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

E-App1 Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$.

By $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, $e_1 \rightarrow e'_1$, and induction, $\cdot \vdash e'_1 : \tau_2 \rightarrow \tau$.

Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e'_1 e_2 : \tau$.

E-App2 Then $e' = e_1 e'_2$ and $e_2 \rightarrow e'_2$.

By $\cdot \vdash e_2 : \tau_2$, $e_2 \rightarrow e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$.

Using this and $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, T-App lets us derive $\cdot \vdash e_1 e'_2 : \tau$.

E-Apply Then e_1 is $\lambda x. e_b$ for some x and e_b, and $e' = e_b[e_2/x]$.

By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, we have $\cdot, x: \tau_2 \vdash e_b : \tau$.

This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

\[\square \]