Fields, Meshes, and Interpolation (Part 3)
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Interpolation
• Cell Location
• Project 2
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Meshes
 – Interpolation
• Cell Location
• Project 2
Office Hours

• Weds @ 1pm (today)
• Thurs @ 11:30am (tomorrow)

• Pls, pls come in if you are having Proj. 1 issues
Email & Piazza

• Piazza is going

• I have sent three emails:
 – OH Doodle
 – OH announcement
 – Piazza
 – (let me know if you didn’t get any of these)
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Meshes
 – Interpolation
• Cell Location
• Project 2
SciVis vs InfoVis

• “it’s infovis when the spatial representation is chosen, and it’s scivis when the spatial representation is given”
1. material made of a network of wire or thread.
"mesh for fishing nets"
synonyms: netting, net, network; More

2. an interlaced structure.
"cell fragments that agglutinate and form intricate meshes"

verb

1. (of the teeth of a gearwheel) lock together or be engaged with another gearwheel.
"one gear meshes with the input gear"
synonyms: engage, connect, lock, interlock; More

2. represent (a geometric object) as a set of finite elements for computational analysis or modeling.

What we want
An example mesh
An example mesh

Where is the data on this mesh?

(for today, it is at the vertices of the triangles)
An example mesh

Why do you think the triangles change size?
Anatomy of a computational mesh

- Meshes contain:
 - Cells
 - Points
- This mesh contains 3 cells and 13 vertices
- Pseudonyms:
 - Cell == Element == Zone
 - Point == Vertex == Node
Types of Meshes

We will discuss all of these mesh types more later in the course.
Rectilinear meshes

- Rectilinear meshes are easy and compact to specify:
 - Locations of X positions
 - Locations of Y positions
 - 3D: locations of Z positions
- Then: mesh vertices are at the cross product.
- Example:
 - $X=\{0,1,2,3\}$
 - $Y=\{2,3,5,6\}$
Rectilinear meshes aren’t just the easiest to deal with ... they are also very common.
Quiz Time

• A 3D rectilinear mesh has:
 – $X = \{1, 3, 5, 7, 9\}$
 – $Y = \{2, 3, 5, 7, 11, 13, 17\}$
 – $Z = \{1, 2, 3, 5, 8, 13, 21, 34, 55\}$

• How many points? $5 \times 7 \times 9 = 315$
• How many cells? $4 \times 6 \times 8 = 192$
Definition: dimensions

- A 3D rectilinear mesh has:
 - $X = \{1, 3, 5, 7, 9\}$
 - $Y = \{2, 3, 5, 7, 11, 13, 17\}$
 - $Z = \{1, 2, 3, 5, 8, 13, 21, 34, 55\}$

- Then its dimensions are $5 \times 7 \times 9$
How to Index Points

- Motivation: many algorithms need to iterate over points.

```cpp
for (int i = 0 ; i < numPoints ; i++)
{
    double *pt = GetPoint(i);
    AnalyzePoint(pt);
}
```
Schemes for indexing points

<table>
<thead>
<tr>
<th>Logical point indices</th>
<th>Point indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 1.5 2.5 3.5 4.5 5.5</td>
<td>30 31 32 33 34 35</td>
</tr>
<tr>
<td>0.4 1.4 2.4 3.4 4.4 5.4</td>
<td>24 25 26 27 28 29</td>
</tr>
<tr>
<td>0.3 1.3 2.3 3.3 4.3 5.3</td>
<td>18 19 20 21 22 23</td>
</tr>
<tr>
<td>0.2 1.2 2.2 3.2 4.2 5.2</td>
<td>12 13 14 15 16 17</td>
</tr>
<tr>
<td>0.1 1.1 2.1 3.1 4.1 5.1</td>
<td>6 7 8 9 10 11</td>
</tr>
<tr>
<td>0.0 1.0 2.0 3.0 4.0 5.0</td>
<td>0 1 2 3 4 5</td>
</tr>
</tbody>
</table>

What would these indices be good for?
How to Index Points

• Problem description: define a bijective function, F, between two sets:
 – Set 1: \{(i,j,k): 0<=i<nX, 0<=j<nY, 0<=k<nZ\}
 – Set 2: \{0, 1, ..., nPoints-1\}

• Set 1 is called “logical indices”
• Set 2 is called “point indices”

Note: for the rest of this presentation, we will focus on 2D rectilinear meshes.
How to Index Points

• Many possible conventions for indexing points and cells.

• Most common variants:
 – X-axis varies most quickly
 – X-axis varies most slowly
Bijective function for rectilinear meshes for this course

```c
int GetPoint(int i, int j, int nX, int nY)
{
    return j*nX + i;
}
```

![Image of grid with bijection function](image)
Quiz Time #3

• A vector field is defined on a mesh with dimensions 100x100
• The vector field is defined with double precision data.
• How many bytes to store this data?

\[= 100 \times 100 \times 2 \times 8 = 160,000 \]
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Interpolation
• Cell Location
• Project 2
Linear Interpolation for Scalar Field F

Goal: have data at some points & want to interpolate data to any location
Linear Interpolation for Scalar Field F
Linear Interpolation for Scalar Field \(F \)

- General equation to interpolate:
 \[F(X) = F(A) + t \cdot (F(B) - F(A)) \]
 - \(t \) is proportion of \(X \) between \(A \) and \(B \)
 - \(t = (X - A) / (B - A) \)
Quiz Time #4

• F(3) = 5, F(6) = 11
• What is F(4)? = 5 + (4-3)/(6-3)*(11-5) = 7

• General equation to interpolate:
 \[F(X) = F(A) + t*(F(B)-F(A)) \]
• t is proportion of X between A and B
 \[t = (X-A)/(B-A) \]
Bilinear interpolation for Scalar Field F

F(0,1) = 1 \quad F(1,1) = 6

F(0.3, 1) = 2.5

F(0.3, 0) = 8.5

What is value of F(0.3, 0.4)?

= 6.1

General equation to interpolate:

F(X) = F(A) + t*(F(B)-F(A))

Idea: we know how to interpolate along lines. Let’s keep doing that and work our way to the middle.
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Meshes
 – Interpolation
• Cell Location
• Project 2
Cell location

• Problem definition: you have a physical location (P). You want to identify which cell contains P.

• Solution: multiple approaches that incorporate spatial data structures.
 – Best data structure depends on nature of input data.
 • More on this later in the quarter.
Cell location for project 2

• Traverse X and Y arrays and find the logical cell index.
 - X={0, 0.05, 0.1, 0.15, 0.2, 0.25}
 - Y={0, 0.05, 0.1, 0.15, 0.2, 0.25}

• (Quiz) what cell contains (0.17,0.08)?
 = (3,1)
Facts about cell (3,1)

- Its cell index is 8.
- It contains points (3,1), (4,1), (3,2), and (4,2).
- Facts about point (3,1):
 - Its location is (X[3], Y[1])
 - Its point index is 9.
 - Its scalar value is F[9].
- Similar facts for other points.
- \(\rightarrow\) we have enough info to do bilinear interpolation
Outline

• Projects & OH
• Review
• The Data We Will Study (pt 2)
 – Meshes
 – Interpolation
• Cell Location
• Project 2
Project 2: Field evaluation

• Goal: for point P, find F(P)
• Strategy in a nut shell:
 – Find cell C that contains P
 – Find C’s 4 vertices, V0, V1, V2, and V3
 – Find F(V0), F(V1), F(V2), and F(V3)
 – Find locations of V0, V1, V2, and V3
 – Perform bilinear interpolation to location P
Project 2

• Assigned today, prompt online
• Due October 10th, midnight (→ October 11th, 6am)
• Worth 7% of your grade
• I provide:
 – Code skeleton online
 – Correct answers provided
• You upload to Canvas:
 – source code
 – output from running your program
What’s in the code skeleton

• Implementations for:
 – GetNumberOfPoints
 – GetNumberOfCells
 – GetPointIndex
 – GetCellIndex
 – GetLogicalPointIndex
 – GetLogicalCellIndex

{ Our bijective function

– “main”: set up mesh, call functions, create output
What’s not in the code skeleton

```cpp
// pt: a two-dimensional location
// dims: an array of size two.
// The first number is the size of the array in argument X,
// the second the size of Y.
// X: an array (size is specified by dims).
// This contains the X locations of a rectilinear mesh.
// Y: an array (size is specified by dims).
// This contains the Y locations of a rectilinear mesh.
// F: a scalar field defined on the mesh. Its size is dims[0]*dims[1].
float EvaluationFunction(const float *pt, const int *dims,
                        const float *X, const float *Y, const float *F)
{
    return 0; // IMPLEMENT ME!!
}
```

... and a few other functions you need to implement
Interpolation for triangle meshes

• Two issues:
 – (1) how to locate triangle that contains point
 • (discuss later)
 – (2) how to interpolate to value within triangle
Idea #1

• More bilinear interpolation
Idea #1 (cont’d)

• Different triangle, similar idea…
Idea #2: Barycentric Coordinates

\[V(P) = V(A_1) \cdot t_1 + V(A_2) \cdot t_2 + V(A_3) \cdot t_3 \] \quad \text{with} \quad t_1 + t_2 + t_3 = 1
Cell-centered data
Rayleigh Taylor Instability