1. R-3.18 (Insertion into a skip list.)

2. Suppose that, instead of flipping a random coin, the level of each item in a skip list is decided deterministically as follows: the \(i \)th item is inserted at level \(k \) (and all levels below) if and only if \(i \) is divisible by \(2^k \). (The first item is item number 1, and the first level is level 0.)

For example, the first item is only on level 0, since 1 is only divisible by 1 = \(2^0 \). The second item is also on level 1, since 2 is divisible by \(2 = 2^1 \). Thus, the levels of the first 16 items are:

\[
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4
\]

(a) Let \(n_k \) be the number of items in list \(S_k \) at height \(k \). Show that \(n_k = \lfloor n_{k-1}/2 \rfloor \).

(b) Describe a sequence of \(n \) key insertions that would result in a skip list where finding an item runs in time \(\Theta(n) \). Explain why this is the case. Your sequence should generalize to any positive integer \(n \). Your key values may be any real-valued numbers, positive or negative.

3. Complete the following hash table exercises:

(a) R-2.19

(b) R-2.20

(c) R-2.21

4. C-2.34 (Pseudocode for deletion without a special removal marker.)