disjoint sets

CIS 315

warning: attempting to follow the logic of this analysis may cause your brain to hurt
aside: disjoint sets

Figure 5.5 A directed-tree representation of two sets \{B, E\} and \{A, C, D, F, G, H\}.

from Dasgupta-Papadimitriou-Vazirani
union-find by rank with path compression

```
procedure makeset(x)
    π(x) = x
    rank(x) = 0

function find(x)
    while x ≠ π(x), x = π(x)
    return x

procedure union(x, y)
    r_x = find(x)
    r_y = find(y)
    if r_x = r_y:  return
    if rank(r_x) > rank(r_y):
        π(r_y) = r_x
    else:
        π(r_x) = r_y
        if rank(r_x) = rank(r_y):  rank(r_y) = rank(r_y) + 1
```

Any sequence of m operations, n of which are makeset, takes time \(O(m \lg^* n) \)
- \(\lg^* n \) is minimum k such that \(\lg \lg \lg \ldots \lg n \leq 1 \) (k iterations)
- actually better -- \(O(m \alpha(n)) \) -- \(\alpha(n) \) is inverse Ackermann function
- both \(\lg^* n \) and \(\alpha(n) \) are very very slow growing, essentially constant
MakeSet(x)
1 x.p = x
2 x.rank = 0

Union(x,y)
1 Link(FindSet(x),FindSet(y))

Link(x,y)
1 if x.rank > y.rank
2 y.p = x
3 else x.p = y
4 if x.rank = y.rank
5 y.rank = y.rank+1

FindSet(x)
1 if x ≠ x.p
2 x.p = FindSet(x.p)
3 return x.p
CLRS uses potential method

very hard to explain – analysis uses Ackermann’s function

\[
A_k(j) = \begin{cases}
 j + 1 & \text{if } k = 0 \\
 A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1
\end{cases}
\]

very fast growing: \(A_4(1) = 16^{512}\), \(A_4(3)\) has \(10^{19,727}\) digits

originally designed to show separation between partial and primitive recursive functions

\[
f^{(j+1)}(j) = f(f(\ldots f(j)\ldots))
\]
is \(j+1\)-way iteration

inverse Ackermann:
\[
\alpha(n) = \min \{k: A_k(1) \geq n\}
\]

we’re not going to define potential function here, it would take all day to describe
main theorem

1) Any sequence of m disjoint set operations, n of which are MakeSets, uses time $O(m \cdot \alpha(n))$.

2) Furthermore, this bound is tight: for any large m,n, there exists a sequence of m disjoint set operations (of which n are MakeSets) that uses time $\Omega(m \cdot \alpha(n))$.

the optimal bound of the text is too hard – we will follow DPV and show a $O(m \cdot \lg^* n)$ upper bound
following DPV

• there are three properties of rank

• **prop1:** for any \(x \), \(\text{rank}(x) < \text{rank}(\pi(x)) \)

• **prop2:** any root node of rank \(k \) has at least \(2^k \) nodes in its tree

• **prop3:** if there are \(n \) elements overall, there can be at most \(n/2^k \) nodes of rank \(k \)

note: \(\pi(x) \) is the parent of \(x \) in DPV, in CLRS it’s \(x.p \)
intervals for ranks

- interval 0: \{1\}
- interval 1: \{2\}
- interval 2: \{3,4\}
- interval 4: \{5,6,...,16\}
- interval 16: \{17, 18,..., 2^{16}=65536\}
- interval 65536: \{65537, 65538, ..., 2^{65536}\}

Interval \(k\) is of the form \(\{k+1, k+2, ..., 2^k\}\)

we look at the ranks of nodes as they pass through the intervals

at most \(\log^* n\) intervals
accounting for find

• each node gets some pocket money
• total pocket money is $n \lg \ast n$ dollars
• each find takes $O(\lg \ast n)$ steps, plus some additional steps paid for by pocket money
• (remember: one step = one dollar)
• so overall time for m finds is $O(m \lg \ast n)$, plus the $n \lg \ast n$ extra
observation:
by prop3, the number of nodes with rank > k is at most
\[\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \ldots \leq \frac{n}{2^{k+1}} \cdot \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots\right) = \frac{n}{2^{k+1}} \cdot (2) = \frac{n}{2^k} \]

- nodes in interval k get \(2^k\) dollars each as pocket money
- total allocation to each interval is at most \(n\) dollars
- there are at most \(\lg^*n\) intervals
- total pocket money at most \(n\lg^*n\) dollars

- pocket money is given to a node when it stops being a root
- once it stops being a root, it will never again become a root
allocation of costs for a find

• during a find on x, look at chain of parent nodes
• if rank of \(\pi(x) \) is in same interval as x, then x pays for that link from its pocket money
• if rank of \(\pi(x) \) is in different interval, then cost is charged to the find operation
• at most \(\lg^* n \) nodes of this latter type
• so amortized cost of find is \(\lg^* n \)
why this works

• each time \(x \) pays a dollar, the rank of its parent increases
• there are at most \(2^k \) nodes in this interval, and \(x \) has \(2^k \) dollars
• its parent will be in the next interval before \(x \) runs out of money, and then \(x \) never has to pay again
• (note: once a node is a non-root, its rank never changes)
BONUS: Fibonacci Heap

notation: in a Fibonacci heap H
• m is the number of marked nodes
• t is the number of trees in the root list
• d is the maximum degree of any node in an n node heap H (fact: $d=\Theta(\log n)$, hard proof)
• e is a constant (chosen later)

potential function: $\varphi(H) = e(2m+t)$
extractMin (consolidate)

actual cost: \(c = O(t+d) \)
potential before: \(e(2m+t) \)
new m: m (no change)
new t: d
new potential: \(e(2m+d) \)

amortized cost:
\[
\hat{c} = O(t+d) + e(2m+d) - e(2m+t) \\
= O(t) + O(d) + e \cdot d - e \cdot t = O(d)
\]

pick \(e \) carefully to cancel the \(O(t) \)
decreaseKey

causes k cuts \textit{(cascading cuts)}
actual cost: \(O(k)\)
new m: \(m-k\)
new t: \(t+k\)
new potential: \(e(2(m-k)+(t+k))\)

\textbf{amortized cost:}
\[\hat{c} = O(k) + e(2(m-k)+(t+k))-e(2m+t)\]
\[= O(k) - e \cdot k = O(1)\]

again, pick \(e\) carefully