Stencil Pattern

Parallel Computing
CIS 410/510
Department of Computer and Information Science
Logistics

- Homework #2 online
 - Due next Monday at 5pm
- Will ask for course and lab feedback soon
 - Trying to assess content, pace, help, …
 - Please try to be constructive
 - Will be setting up on Qualtrics
- Should be thinking about programming teams
 - Target teams of 4
 - Undergraduates separate from graduate
 - Proposals are due Friday at 5pm
 - Will set up project repository for each group
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Partitioning

- Data is divided into
 - non-overlapping regions (avoid write conflicts, race conditions)
 - equal-sized regions (improve load balancing)
Partitioning

Data is divided into non-overlapping, equal-sized regions.

- Data is divided into
 - non-overlapping regions (avoid write conflicts, race conditions)
 - equal-sized regions (improve load balancing)
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Stencil Pattern

- A stencil pattern is a map where each output depends on a “neighborhood” of inputs.
- These inputs are a set of fixed offsets relative to the output position.
- A stencil output is a function of a “neighborhood” of elements in an input collection.
 - Applies the stencil to select the inputs.
- Data access patterns of stencils are regular.
 - Stencil is the “shape” of “neighborhood”.
 - Stencil remains the same.
Serial Stencil Example (part 1)

```c++
1 template<
2   int NumOff,       // number of offsets
3   typename In,     // type of input locations
4   typename Out,    // type of output locations
5   typename F       // type of function/ functor
6   >
7 void stencil(
8   int n,           // number of elements in data collection
9   const In a[],    // input data collection (n elements)
10  Out r[],         // output data collection (n elements)
11  In b,            // boundary value
12  F func,          // function/functor from neighborhood inputs to output
13  const int offsets[] // offsets (NumOffsets elements)
14  ) {
```
Serial Stencil Example (part 2)

```c
// array to hold neighbors
In neighborhood[NumOff];

// loop over all output locations
for (int i = 0; i < n; ++i) {
    // loop over all offsets and gather neighborhood
    for (int j = 0; j < NumOff; ++j) {
        // get index of jth input location
        int k = i + offsets[j];
        if (0 <= k && k < n) {
            // read input location
            neighborhood[j] = a[k];
        } else {  // handle boundary case
            neighborhood[j] = b;
        }
    }

    // compute output value from input neighborhood
    r[i] = func(neighborhood);
}
```
What is the stencil pattern?
What is the stencil pattern?

Input array
What is the stencil pattern?
What is the stencil pattern?
What is the stencil pattern?

This stencil has 3 elements in the neighborhood: i-1, i, i+1
What is the stencil pattern?

Applies some function to them…

neighborhood
What is the stencil pattern?

And outputs to the i^{th} position of the output array
Stencil Patterns

- Stencils can operate on one dimensional and multidimensional data
- Stencil neighborhoods can range from compact to sparse, square to cube, and anything else!
- It is the pattern of the stencil that determines how the stencil operates in an application
2-Dimensional Stencils

4-point stencil 5-point stencil 9-point stencil

Center cell (P) is not used Center cell (P) is used as well Center cell (C) is used as well

Source: http://en.wikipedia.org/wiki/Stencil_code
3-Dimensional Stencils

6-point stencil
(7-point stencil)

24-point stencil
(25-point stencil)

Source: http://en.wikipedia.org/wiki/Stencil_code
Stencil Example

- Here is our array, A

\[
\begin{array}{ccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 9 & 7 & 0 & 0 & 0 \\
0 & 6 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Stencil Example

- Here is our array A
- B is the output array
 - Initialize to all 0
- Apply a stencil operation to the inner square of the form:
 $$B(i,j) = \text{avg}(A(i,j), A(i-1,j), A(i+1,j), A(i,j-1), A(i,j+1))$$

What is the stencil?
1) Average all blue squares

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 9 & 7 \\
0 & 6 & 4 \\
0 & 0 & 0 \\
\end{array}
\]
Stencil Pattern Procedure

1) Average all blue squares
2) Store result in B

![Stencil Pattern Diagram]
Stencil Pattern Procedure

1) Average all blue squares
2) Store result in B
3) Repeat 1 and 2 for all green squares
Practice!
Stencil Pattern Practice

A

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 9 & 7 & 0 \\
0 & 6 & 4 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

B

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4.4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]
Stencil Pattern Practice

A

B

4.4

4.0

0
Stencil Pattern Practice

A

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 9 & 7 & 0 \\
0 & 6 & 4 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

B

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4.4 & 4.0 & 0 \\
0 & 3.8 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]
Stencil Pattern Practice

A

B

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 9 7 0
0 6 4 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 4.4 4.0 0
0 3.8 3.4 0
0 0 0 0
0 0 0 0
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Serial Stencil Example (part 1)

```c++
template<
    int NumOff, // number of offsets
    typename In, // type of input locations
    typename Out, // type of output locations
    typename F // type of function/functor
>
void stencil(
    int n,       // number of elements in data collection
    const In a[], // input data collection (n elements)
    Out r[],     // output data collection (n elements)
    In b,        // boundary value
    F func,      // function/functor from neighborhood inputs to output
    const int offsets[] // offsets (NumOffsets elements)
) {
```
Serial Stencil Example (part 2)

```
// array to hold neighbors
In neighborhood[NumOff];
// loop over all output locations
for (int i = 0; i < n; ++i) {
    // loop over all offsets and gather neighborhood
    for (int j = 0; j < NumOff; ++j) {
        // get index of jth input location
        int k = i+offsets[j];
        if (0 <= k && k < n) {
            // read input location
            neighborhood[j] = a[k];
        } else {
            // handle boundary case
            neighborhood[j] = b;
        }
    }
    // compute output value from input neighborhood
    a[i] = func(neighborhood);
}
```

How would we parallelize this?

Updates occur in place!!!
Stencil Pattern with In Place Update
Stencil Pattern with In Place Update

Input array

[Diagram of a Stencil Pattern with In Place Update]
Stencil Pattern with In Place Update

Function
Stencil Pattern with In Place Update

Input Array !!!
Stencil Example

- Here is our array, A

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 9 & 7 & 0 \\
0 & 6 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Stencil Example

• Here is our array A
• Update A in place
• Apply a stencil operation to the inner square of the form:

$$A(i,j) = \text{avg}(A(i,j),$$
$$A(i-1,j), A(i+1,j),$$
$$A(i,j-1), A(i,j+1))$$

What is the stencil?
Stencil Pattern Procedure

1) Average all blue squares
Stencil Pattern Procedure

1) Average all blue squares
2) Store result in red square

![Stencil Pattern Diagram]

```
0 0 0 0 0
0 9 7 0 0
0 6 4 0 0
0 0 0 0 0
```
Stencils Pattern Procedure

1) Average all blue squares
2) Store result in red square
3) Repeat 1 and 2 for all green squares
Practice!
Stencil Pattern Practice

A

0 0 0 0 0
0 9 7 0
0 6 4 0
0 0 0 0
0 0 0 0

...
Stencil Pattern Practice

\[
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 4.4 & 7 & 0 & 0 \\
0 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
What is the stencil pattern?

A

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 4.4 & 7 & 0 & 0 \\
0 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
What is the stencil pattern?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4.4</td>
<td>3.08</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4.4</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
What is the stencil pattern?

A

\[
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 4.4 & 3.08 & 0 & 0 \\
0 & 6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
What is the stencil pattern?

\[
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 4.4 & 3.08 & 0 & 0 \\
0 & 2.88 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
What is the stencil pattern?

A

0 0 0 0

0 4.4 3.08 0

0 2.88 4 0

0 0 0 0
What is the stencil pattern?
Different Cases

Separate output array

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4.4</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
</tr>
<tr>
<td>6</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Updates occur in place

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4.4</td>
</tr>
<tr>
<td>7</td>
<td>3.08</td>
</tr>
<tr>
<td>6</td>
<td>2.88</td>
</tr>
<tr>
<td>4</td>
<td>1.992</td>
</tr>
</tbody>
</table>
Which is correct?

Is this output incorrect?
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Iterative Codes

- Iterative codes are ones that update their data in steps
 - At each step, a new value of an element is computed using a formula based on other elements
 - Once all elements are updated, the computation proceeds to the next step or completes

- Iterative codes are most commonly found in computer simulations of physical systems for scientific and engineering applications
 - Computational fluid dynamics
 - Electromagnetics modeling

- They are often applied to solve partial differential equations
 - Jacobi iteration
 - Gauss-Seidel iteration
 - Successive over relaxation
Iterative Codes and Stencils

- Stencils essentially define which elements are used in the update formula.
- Because the data is organized in a regular manner, stencils can be applied across the data uniformly.
Simple 2D Example

- Consider the following code

```cpp
for k = 1, 1000
    for i = 1, N-2
        for j = 1, N-2
            a[i][j] = 0.25 * (a[i][j] + a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1])
```

Do you see anything interesting?

How would you parallelize?
2-Dimension Jacobi Iteration

- Consider a 2D array of elements
- Initialize each array element to some value
- At each step, update each array element to the arithmetic mean of its N, S, E, W neighbors
- Iterate until array values converge
- Here we are using a 4-point stencil
- It is different from before because we want to update all array elements simultaneously … How?
2-Dimension Jacobi Iteration

- Consider a 2D array of elements
- Initialize each array element to some value
- At each step, update each array element to the arithmetic mean of its N, S, E, W neighbors
- Iterate until array values converge
Successive Over Relaxation (SOR)

- SOR is an alternate method of solving partial differential equations.

- While the Jacobi iteration scheme is very simple and parallelizable, its slow convergent rate makes it impractical for any "real world" applications.

- One way to speed up the convergent rate would be to "over predict" the new solution by linear extrapolation.

- It also allows a method known as Red-Black SOR to be used to enable parallel updates in place.
Red / Black SOR

Pass 1: Writing to red cells, reading from black

Pass 2: Writing to black cells, reading from red
Red / Black SOR
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Implementing Stencil with Shift

- One possible implementation of the stencil pattern includes shifting the input data.

- For each offset in the stencil, we gather a new input vector by **shifting** the original input by the offset amount.
Implementing Stencil with Shift

All input arrays are derived from the same original input array
Implementing Stencil with Shift

- This implementation is only beneficial for one dimensional stencils or the memory-contiguous dimension of a multidimensional stencil

- Memory traffic to external memory is not reduced with shifts

- But, shifts allow vectorization of the data reads, which may reduce the total number of instructions
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Stencil and Cache Optimizations

- Assuming 2D array where rows are contiguous in memory…
 - Horizontally related data will tend to belong to the same cache line
 - Vertical offset accesses will most likely result in cache misses
Stencil and Cache Optimizations

- Assigning rows to cores:
 - Maximizes horizontal data locality
 - Assuming vertical offsets in stencil, this will create redundant reads of adjacent rows from each core

- Assigning columns to cores:
 - Redundantly read data from same cache line
 - Create false sharing as cores write to same cache line
Stencil and Cache Optimizations

- Assigning “strips” to each core can be a better solution

- **Strip-mining**: an optimization in a stencil computation that groups elements in a way that avoids redundant memory accesses and aligns memory accesses with cache lines
Stencil and Cache Optimizations

- A strip’s size is a multiple of a cache line in width, and the height of the 2D array
- Strip widths are in increments of the cache line size so as to avoid false sharing and redundant reads
- Each strip is processed serially from top to bottom within each core
Stencil and Cache Optimizations

\[m \times \text{sizeof(cacheLine)} \]

Height of array
Contents

- Partitioning
- What is the stencil pattern?
 - Update alternatives
 - 2D Jacobi iteration
 - SOR and Red/Black SOR
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
But first… Conway’s Game of Life

- The **Game of Life** is a cellular automaton created by John Conway in 1970.
- The evolution of the game is entirely based on the input state – zero player game.
- To play: create initial state, observe how the system evolves over successive time steps.

2D landscape
Conway’s Game of Life

- Typical rules for the Game of Life
 - Infinite 2D grid of square cells, each cell is either “alive” or “dead”
 - Each cell will interact with all 8 of its neighbors
 - Any cell with < 2 live neighbors dies (under-population)
 - Any cell with 2 or 3 live neighbors lives to next gen.
 - Any cell with > 3 live neighbors dies (overcrowding)
 - Any dead cell with 3 live neighbors becomes a live cell
Conway’s Game of Life: Examples
Conway’s Game of Life

- The Game of Life computation can easily fit into the stencil pattern!
- Each larger, black box is owned by a thread
- What will happen at the boundaries?
Conway’s Game of Life

- We need some way to preserve information from the previous iteration without overwriting it
- Ghost Cells are one solution to the boundary and update issues of a stencil computation
- Each thread keeps a copy of neighbors’ data to use in its local computations
- These ghost cells must be updated after each iteration of the stencil
Conway’s Game of Life

- Working with ghost cells
Conway’s Game of Life

- Working with ghost cells
Conway’s Game of Life

- Working with ghost cells

Compute the new value for this cell.
Conway’s Game of Life

- Working with ghost cells

Five of its eight neighbors already belong to this thread

But three of its neighbors belong to a different thread
Conway’s Game of Life

- Working with ghost cells

Before any updates are done in a new iteration, all threads must update their ghost cells.
Conway’s Game of Life

- Working with ghost cells

Data this thread can use (including ghost cells from neighbors)
Conway’s Game of Life

- Working with ghost cells

[Diagram of a grid with a single cell highlighted, indicating updated cells]
Conway’s Game of Life

Things to consider…

- What might happen to our ghost cells as we increase the number of threads?
 - the ghost cells to total cells ratio will rapidly increase causing a greater demand on memory

- What would be the benefits of using a larger number of ghost cells per thread? Negatives?
 - in the Game of Life example, we could double or triple our ghost cell boundary, allowing us to perform several iterations without stopping for a ghost cell update
Stencil and Communication Optimizations

- When data is distributed, ghost cells must be explicitly communicated among nodes between loop iterations.

- Darker cells are PE 0’s ghost cells.

- After first iteration of stencil computation:
 - PE 0 must request PE 1 & PE 2’s stencil results.
 - PE 0 can perform another iteration of stencil.
Stencil and Communication Optimizations

- Generally better to replicate ghost cells in each local memory and swap after each iteration than to share memory
 - Fine-grained sharing can lead to increased communication cost
Stencil and Communication Optimizations

- **Halo**: set of all ghost cells
- Halo must contain all neighbors needed for one iteration
- Larger halo (**deep halo**)
 - Trade off
 - less communications and more independence, but…
 - more redundant computation and more memory used

- **Latency Hiding**: Compute interior of stencil while waiting for ghost cell updates
Table of Contents

- What is the stencil pattern?
- Implementing stencil with shift
- Stencil and cache optimizations
- Stencil and communication optimizations
- Recurrence
Recurrence

- What if we have several nested loops with data dependencies between them when doing a stencil computation?
Recurrence

```c
void my_recurrence(
    size_t v,       // number of elements vertically
    size_t h,       // number of elements horizontally
    const float a[v][h], // input 2D array
    float b[v][h]    // output 2D array (boundaries already initialized )
) {
    for (int i=1; i<v; ++i)
        for (int j=1; j<h; ++j)
            b[i][j] = f(b[i-1][j], b[i][j-1], a[i][j]);
```
Recurrence

```c
1  void my_recurrence(
2      size_t v,       // number of elements vertically
3      size_t h,      // number of elements horizontally
4      const float a[v][h], // input 2D array
5      float b[v][h]   // output 2D array (boundaries already initialized)
6  )
7  {
8      for (int i=1; i<v; ++i)
9         for (int j=1; j<h; ++j)
10            b[i][j] = f(b[i-1][j], b[i][j-1], a[i][j]);
11  }
```

Data dependencies between loops
Recurrence

- This can still be parallelized!
- Trick: find a plane that cuts through grid of intermediate results
 - Previously computed values on one side of plane
 - Values to still be computed on other side of plane
 - Computation proceeds perpendicular to plane through time (this is known as a sweep)
- This plane is called a separating hyperplane
Recurrence
Recurrence

- Same grid of intermediate results
- Each level corresponds to a loop iteration
- Computation proceeds downward
Conclusion

- Examined the stencil and recurrence pattern
 - Both have a regular pattern of communication and data access
- In both patterns we can convert a set of offset memory accesses to shifts
- Stencils can use strip-mining to optimize cache use
- Ghost cells should be considered when stencil data is distributed across different memory spaces