Types

Major new topic worthy of several lectures: Type systems
- Continue to use (CBV) Lambda Calculus as our core model
- But will soon enrich with other common primitives

This lecture:
- Motivation for type systems
- What a type system is designed to do and not do
 - Definition of stuckness, soundness, completeness, etc.
- The Simply-Typed Lambda Calculus
 - A basic and natural type system
 - Starting point for more expressiveness later

Next lecture:
- Prove Simply-Typed Lambda Calculus is sound

Introduction to Types

Naive thought: More powerful PLs are always better
- Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)
- Have really flexible features (e.g., lambdas)
- Have conveniences to keep programs short

If this is the only metric, types are a step backward
- Whole point is to allow fewer programs
- A “filter” between abstract syntax and compiler/interpreter
 - Fewer programs in language means less for a correct implementation
- So if types are a great idea, they must help with other desirable properties for a PL...

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code
 - Example: “if” applied to “mkpair”
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., \(x \cdot v \))
 - Ensure execution never gets to a “meaningless” state
 - But “meaningless” depends on the semantics
 - Each PL typically makes some things type errors (again being conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
 - Clients can’t break invariants
 - Clients can’t assume an implementation
 - Requires safety, meaning no “stuck” states that corrupt run-time (e.g., C/C++)
 - Can enforce encapsulation without static types, but types are a particularly nice way

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don’t have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
 - Have symbol lookup depend on operands’ types
 - Only modestly interesting semantically
 - Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
 - Often via a “type-and-effect” system
 - Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you’re checking
 - Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)
What is a type system?

Er, uh, you know it when you see it. Some clues:
- A decidable (?) judgment for classifying programs
 - E.g., \(e_1 + e_2 \) has type int if \(e_1, e_2 \) have type int (else no type)
- A sound (?) abstraction of computation
 - E.g., if \(e_1 + e_2 \) has type int, then evaluation produces an int (with caveats!)
- Fairly syntax directed
 - Non-example (?): \(e \) terminates within 100 steps
- Particularly fuzzy distinctions with abstract interpretation
 - Possible topic for a later lecture
 - Often a more natural framework for flow-sensitive properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers
- Later lecture: Typed PLs are like proof systems for logics

Plan for the next few weeks

- Simply typed \(\lambda \) calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?
- Definition: \(e \) is stuck if \(e \) is not a value and there is no \(e' \) such that \(e \rightarrow e' \)
- Definition: \(e \) can get stuck if there exists an \(e' \) such that \(e \rightarrow^* e' \) and \(e' \) is stuck
 - In a deterministic language, \(e \) “gets stuck”

Most people don’t appreciate that stuckness depends on the operational semantics
- Inherent given the definitions above

What’s stuck?

Given our language, what are the set of stuck expressions?
- Note: Explicitly defining the stuck states is unusual

\[
egin{align*}
 e & \ ::= \; \lambda x. e \mid x \mid e \; e \mid c \\
 v & \ ::= \; \lambda x. e \mid e

(\lambda x. e) v & \rightarrow e_{v/x}
\]

(Hint: The full set is recursively defined.)

\[
S \ ::= \; x \mid c \; v \mid S \; e \mid v \; S
\]

Note: Can have fewer stuck states if we add more rules
- Example: \(e \rightarrow v \) in unsafe languages, stuck states can set the computer on fire

Adding constants

Enrich the Lambda Calculus with integer constants:
- Not strictly necessary, but makes types seem more natural

\[
\begin{align*}
 e & \ ::= \; \lambda x. e \mid x \mid e \; e \mid c \\
 v & \ ::= \; \lambda x. e \mid e

(\lambda x. e) v & \rightarrow e_{v/x}
\]

No new operational-semantics rules since constants are values

We could add \(+ \) and other primitives
- Then we would need new rules (e.g., 3 small-step for \(+ \))
- Alternately, parameterize “programs” by primitives:
 \(\lambda \text{plus}, \lambda \text{times}, \ldots \; e \)
 - Like Pervasives in OCaml
 - A great way to keep language definitions small

Soundness and Completeness

A type system is a judgment for classifying programs
- "accepts" a program if some complete derivation gives it a type, else "rejects"

A sound type system never accepts a program that can get stuck
- No false negatives

A complete type system never rejects a program that can’t get stuck
- No false positives

It is typically undecidable whether a stuck state can be reachable
- Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete
 - We’ll choose soundness, try to reduce false positives in practice

Omitted: Type inference

Effect systems
- Recursive types
- Abstract types
- Subtyping
- Polymorphic types (generics)
- Extensions (pairs, sums, lists, recursion)

Inherent given the definitions above

Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\Gamma \vdash e : \tau \]

1. NO: can get stuck, e.g., \((\lambda x. y) 3)\)
2. NO: too restrictive, e.g., \((\lambda x. x) 3) (\lambda y. y)\)
3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y) 3)\)

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to classify functions using argument and result types

For (1): \(\tau ::= \cdot \mid \tau \rightarrow \tau\)
 - Require whole program to type-check under empty context

For (2): \(\tau ::= \text{int} \mid \tau \rightarrow \tau\)
 - An infinite number of types: \(\text{int} \rightarrow \text{int}, (\text{int} \rightarrow \text{int}) \rightarrow \text{int}, \text{int} \rightarrow (\text{int} \rightarrow \text{int}), \ldots\)

Concrete syntax note: \(\rightarrow\) is right-associative, so \(\tau_1 \rightarrow \tau_2 \rightarrow \tau_3\) is \((\tau_1 \rightarrow \tau_2) \rightarrow \tau_3\)

STLC Type System

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash c : \text{int} \]

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

\[\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \]

\[\Gamma \vdash e_2 : \tau_1 \]

\[\Gamma \vdash e_1 e_2 : \tau_1 \]

The function-introduction rule is the interesting one...

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Where did \(\tau_1\) come from?
 - Our rule “inferred” or “guessed” it
 - To be syntax directed, change \(\lambda x. e\) to \(\lambda x : \tau. e\) and use that \(\tau\)

Can think of “adding \(x\) as shadowing or requiring \(x \not\in \text{Dom}(\Gamma)\)
 - Systematic renaming (\(\alpha\)-conversion) ensures \(x \not\in \text{Dom}(\Gamma)\) is not a problem

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Is our type system too restrictive?
 - That’s a matter of opinion
 - But it does reject programs that don’t get stuck

Example: \((\lambda x. (x (\lambda y. y)) (x 3))\) \(\lambda x. x\)
 - Does not get stuck: Evaluates to 3
 - Does not type-check:
 - There is no \(\tau_1, \tau_2\) such that \(x : \tau_1 \vdash (x (\lambda y. y)) (x 3) : \tau_2\)
 - because you have to pick one type for \(x\)

Always restrictive

Whether or not a program “gets stuck” is undecidable:
 - If \(e\) has no constants or free variables, then \(e\) \((3 \ 4)\) or \(e\) gets stuck if and only if \(e\) terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”
 - Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk
 - Make “false positives” (rejecting safe program) rare enough
 - Have compile-time resources for “fancy” type systems
 - Make workarounds for false positives convenient enough
How does STLC measure up?

So far, STLC is sound:

▶ As language dictators, we decided c and undefined variables were “bad” meaning neither values nor reducible
▶ Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:

▶ In practice, just too often that it prevents safe and natural code reuse
▶ More fundamentally, it’s not even Turing-complete
 ▶ Turns out all (well-typed) programs terminate
 ▶ A good-to-know and useful property, but inappropriate for a general-purpose PL
 ▶ That’s okay: We will add more constructs and typing rules

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

▶ The popular way since the early 1990s

Theorem (Type Safety): If $\cdot \vdash e : \tau$ then e diverges or $e \rightarrow^n v$ for an n and v such that $\cdot \vdash v : \tau$

▶ That is, if $\cdot \vdash e : \tau$, then e cannot get stuck

Proof: Next lecture