CIS 624: Structure of Programming Languages

Lecture 6 — Little Trusted Languages; Equivalence

Boyana Norris
2014
Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:

- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- “Pseudo-denotational” semantics

Now:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus
Packet Filters

A very simple view of packet filters:

- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code?

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language

 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly

 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly

 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
- Client-side web scripts (Javascript)
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things
What is equivalence?

Equivalence depends on what is observable!

▶ Partial I/O equivalence (if terminates, same ans)
 ▶ while 1 skip equivalent to everything
 ▶ not transitive
▶ Total I/O equivalence (same termination behavior, same ans)
▶ Total heap equivalence (same termination behavior, same heaps)
 ▶ All (almost all?) variables have the same value
▶ Equivalence plus complexity bounds
 ▶ Is $O(2^n)$ really equivalent to $O(n)$?
 ▶ Is “runs within 10ms of each other” important?
▶ Syntactic equivalence (perhaps with renaming)
 ▶ Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence
Program Example: Strength Reduction

Motivation: Strength reduction
▶ A common compiler optimization due to architecture issues

Theorem: $H ; e \times 2 \downarrow c$ if and only if $H ; e + e \downarrow c$

Proof sketch:
▶ Prove separately for each direction
▶ Invert the assumed derivation, use hypotheses plus a little math to derive what we need
▶ Hmm, doesn’t use induction. That’s because this theorem isn’t very useful...
Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e \ast 2$, then $H; e' \Downarrow c'$ if and only if $H; e'' \Downarrow c'$ where e'' is e' with $e \ast 2$ replaced with $e + e$

First some useful metanotation:

\[
C ::= [\cdot] | C + e | e + C | C * e | e * C
\]

$C[e]$ is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

$H ; C[e \ast 2] \Downarrow c'$ if and only if $H ; C[e + e] \Downarrow c'$

Proof sketch: By induction on structure (“syntax height”) of C

- The base case ($C = [\cdot]$) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction
Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with \(e \ast 2 \) and \(e + e \) except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the “nested \(X \)” theorem for any appropriate \(X \):

If \((H ; e_1 \Downarrow c \text{ if and only if } H ; e_2 \Downarrow c)\),
then \((H ; C[e_1] \Downarrow c' \text{ if and only if } H ; C[e_2] \Downarrow c')\)

The proof is identical except the base case is “by assumption”
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all \(n \), if \(H ; s_1; (s_2; s_3) \rightarrow^n H' \); skip then there exist \(H'' \) and \(n' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' \); skip and \(H''(\text{ans}) = H'(\text{ans}) \).

(b) If for all \(n \) there exist \(H' \) and \(s' \) such that \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; s' \), then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s'' \).

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply large-step:

\[
\begin{align*}
\text{CONST} & \quad \text{VAR} \\
H ; c & \downarrow c & H ; x & \downarrow H(x)
\end{align*}
\]

IMP w/o multiply small-step:

\[
\begin{align*}
\text{SVAR} & \\
H ; x & \rightarrow H(x)
\end{align*}
\]

\[
\begin{align*}
\text{SLEFT} & \\
H ; e_1 & \rightarrow e'_1 \\
H ; e_1 + e_2 & \rightarrow e'_1 + e_2
\end{align*}
\]

\[
\begin{align*}
\text{SADD} & \\
H ; c_1 + c_2 & \rightarrow c_1 + c_2
\end{align*}
\]

\[
\begin{align*}
\text{SRIGHT} & \\
H ; e_2 & \rightarrow e'_2 \\
H ; e_1 + e_2 & \rightarrow e_1 + e'_2
\end{align*}
\]

Theorem: Semantics are equivalent: \(H ; e \downarrow c \) if and only if \(H ; e \rightarrow^* c \)

Proof: We prove the two directions separately...
Proof, part 1

First assume $H; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

Proof by induction on n

Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $H; e \Downarrow c$

- **CONST**: Derivation with CONST implies $e = c$, and we can derive $H; c \rightarrow^0 c$

- **VAR**: Derivation with VAR implies $e = x$ for some x where $H(x) = c$, so derive $H; e \rightarrow^1 c$ with SVAR

- **ADD**: ...
Part 1, continued

First assume \(H; e \downarrow c \) and show \(\exists n. H; e \rightarrow^n c \)

Lemma (prove it!): If \(H; e \rightarrow^n e' \), then \(H; e_1 + e \rightarrow^n e_1 + e' \)
and \(H; e + e_2 \rightarrow^n e' + e_2 \).

Given the lemma, prove by induction on derivation of \(H; e \downarrow c \)

\begin{itemize}
 \item ...
 \item ADD: Derivation with ADD implies \(e = e_1 + e_2 \), \(c = c_1 + c_2 \),
 \(H; e_1 \downarrow c_1 \), and \(H; e_2 \downarrow c_2 \) for some \(e_1, e_2, c_1, c_2 \).

 By induction (twice), \(\exists n_1, n_2. H; e_1 \rightarrow^{n_1} c_1 \) and
 \(H; e_2 \rightarrow^{n_2} c_2 \).

 So by our lemma \(H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2 \) and
 \(H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2 \).

 By SADD \(H; c_1 + c_2 \rightarrow c_1 + c_2 \).

 So \(H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c \).
\end{itemize}
Proof, part 2

Now assume \(\exists n. \, H; e \rightarrow^n c \) and show \(H ; e \Downarrow c \).

Proof by induction on \(n \):

- \(n = 0 \): \(e \) is \(c \) and \texttt{CONST} lets us derive \(H ; c \Downarrow c \)
- \(n > 0 \): (Clever: break into first step and remaining ones)
 \(\exists e'. \, H; e \rightarrow e' \) and \(H; e' \rightarrow^{n-1} c \).
 By induction \(H ; e' \Downarrow c \).
 So this lemma suffices: If \(H; e \rightarrow e' \) and \(H ; e' \Downarrow c \), then \(H ; e \Downarrow c \).

Prove the lemma by induction on derivation of \(H; e \rightarrow e' \):

- \texttt{SVAR}: ...
- \texttt{SADD}: ...
- \texttt{SLEFT}: ...
- \texttt{SRIGHT}: ...
Part 2, key lemma

Lemma: If \(H; e \rightarrow e' \) and \(H; e' \downarrow c \), then \(H; e \downarrow c \).

Prove the lemma by induction on derivation of \(H; e \rightarrow e' \):

- **SVAR:** Derivation with **SVAR** implies \(e \) is some \(x \) and \(e' = H(x) = c \), so derive, by **VAR**, \(H; x \downarrow H(x) \).

- **SADD:** Derivation with **SADD** implies \(e \) is some \(c_1 + c_2 \) and \(e' = c_1 + c_2 = c \), so derive, by **ADD** and two **CONST**, \(H; c_1 + c_2 \downarrow c_1 + c_2 \).

- **SLEFT:** Derivation with **SLEFT** implies \(e = e_1 + e_2 \) and \(e' = e'_1 + e_2 \) and \(H; e_1 \rightarrow e'_1 \) for some \(e_1, e_2, e'_1 \).

Since \(e' = e'_1 + e_2 \) inverting assumption \(H; e' \downarrow c \) gives

\[
H; e'_1 \downarrow c_1, \ H; e_2 \downarrow c_2 \text{ and } c = c_1 + c_2.
\]

Applying the induction hypothesis to \(H; e_1 \rightarrow e'_1 \) and \(H; e'_1 \downarrow c_1 \) gives \(H; e_1 \downarrow c_1 \).

So use **ADD**, \(H; e_1 \downarrow c_1 \), and \(H; e_2 \downarrow c_2 \) to derive \(H; e_1 + e_2 \downarrow c_1 + c_2 \).

- **SRIGHT:** Analogous to **SLEFT**
The cool part, redux

Step through the SLEFT case more visually:

By assumption, we must have derivations that look like this:

\[
\begin{align*}
 H; e_1 & \rightarrow e_1' \\
 H; e_1 + e_2 & \rightarrow e_1' + e_2 \\
 H; e_1' \Downarrow c_1 & \quad H; e_2 \Downarrow c_2 \\
 H; e_1' + e_2 & \Downarrow c_1 + c_2
\end{align*}
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H; e_1 \Downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\begin{align*}
 H; e_1 \Downarrow c_1 & \quad H; e_2 \Downarrow c_2 \\
 H; e_1 + e_2 & \Downarrow c_1 + c_2
\end{align*}
\]
A nice payoff

Theorem: The small-step semantics is deterministic:
if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$

Not obvious (see sleft and sright), nor do I know a direct proof

- Given $(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent
Conclusions

- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

\[
\begin{align*}
H ; e \Downarrow c & \quad c \leq 0 \\
H & \quad H ; \text{while } e s \rightarrow H ; \text{skip} \\
H ; e \Downarrow c & \quad c > 0 \\
H & \quad H ; \text{while } e s \rightarrow H \ ; s ; \text{while } e s
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace ASSIGN and VAR rules with

\[
\begin{align*}
H ; x := e & \rightarrow H, x \mapsto e \ ; \text{skip} \\
H ; H(x) \Downarrow c & \\
H & \quad H ; x \Downarrow c
\end{align*}
\]

NOT equivalent to our original language