Where we are
▶ Done: OCaml tutorial, "IMP" syntax, structural induction
▶ Now: Operational semantics for our little “IMP” language
▶ Most of what you need for Homework 1
▶ (But Problem 4 requires proofs over semantics)

Review
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
e &::= c \mid x \mid e + e \mid e \ast e \\
\end{align*}
\]

(c ∈ \{\ldots, −2, −1, 0, 1, 2, \ldots\})
(x ∈ \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Outline
▶ Semantics for expressions
1. Informal idea; the need for heaps
2. Definition of heaps
3. The evaluation judgment (a relation form)
4. The evaluation inference rules (the relation definition)
5. Using inference rules
 ▶ Derivation trees as interpreters
 ▶ Or as proofs about expressions
6. Metatheory: Proofs about the semantics
▶ Then semantics for statements
▶ ...

Informal idea
Given e, what c does e evaluate to?

\[
\begin{align*}
1 + 2 & \quad x + 2
\end{align*}
\]

It depends on the values of variables (of course)

Use a heap \(H \) for a total function from variables to constants
▶ Could use partial functions, but then \(\exists H \) and e for which there is no c

We’ll define a relation over triples of \(H, e, \) and c
▶ Will turn out to be function if we view \(H \) and e as inputs and c as output
▶ With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps
\[
H ::= \cdot \mid H, x \mapsto c
\]

A lookup-function for heaps:

\[
H(x) =
\begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

▶ Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements
▶ For expression evaluation, ‘we are given an H’
The judgment
We will write: \(H ; e \downarrow c \)

to mean, “\(e \) evaluates to \(c \) under heap \(H \)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \downarrow c \) to follow PL convention and to distinguish it from other relations

We can write: \(\cdot, x \mapsto 4 ; 3 + y \downarrow 3 \), which will turn out to be true
(this triple will be in the relation we define)

Or: \(\cdot, x \mapsto 4 ; x + y \downarrow 6 \), which will turn out to be false
(this triple will not be in the relation we define)

Inference rules
We can view the inference rules as defining an interpreter
\(\cdot, y \mapsto 4 \)

\(\cdot, y \mapsto 4 ; 3 + y \downarrow 3 \), and \(\cdot, y \mapsto 4 ; 5 \downarrow 5 \)

\(\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12 \)

Example instantiation:

\(\cdot, y \mapsto 4 ; 3 \downarrow 3 \cdot, y \mapsto 4 ; 5 \downarrow 5 \)

\(\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12 \)

• Instantiates: \(\cdot, x \mapsto 4 \)\n
• \(e_1 = (3 + y) \)\n
• \(c_1 = 7 \)\n
• \(e_2 = 5 \)\n
• \(c_2 = 5 \)

Derivations
A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

\(\cdot, y \mapsto 4 ; 3 \downarrow 3 \cdot, y \mapsto 4 ; y \downarrow 4 \)

\(\cdot, y \mapsto 4 ; 3 + y \downarrow 7 \cdot, y \mapsto 4 ; 5 \downarrow 5 \)

\(\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12 \)

By definition, \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root

What are these things?

We can view the inference rules as defining an interpreter

• Complete derivation shows recursive calls to the “evaluate expression” function

• Recursive calls from conclusion to hypotheses

• Syntax-directed means the interpreter need not “search”

See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

• Complete derivation proves facts from other facts starting with axioms

• Facts established from hypotheses to conclusions
Some theorems

- Progress: For all H and e, there exists a c such that $H; c \downarrow c$
- Determinacy: For all H and e, there is at most one c such that $H; e \downarrow c$

We rigged it that way... what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.
- If it terminates

We could define $H_1; s \downarrow H_2$
- Would be a partial function from H_1 and s to H_2
- Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$H_1; s_1 \rightarrow H_2; s_2$

Statement semantics

Statement semantics cont’d

What about while e s (do s and loop if $e > 0$)?

```
WHILE
H; e $s$ $H$; if $e$ $s$; while $e$ $s$ skip
```

Many other equivalent definitions possible

Program semantics

Defined $H; s \rightarrow H' ; s'$, but what does “s” mean/do?

Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \ldots$
with each step justified by a complete derivation using our single-step statement semantics

Let $H_1; s_1 \rightarrow^n H_2; s_2$ mean “becomes after n steps”

Let $H_1; s_1 \rightarrow^* H_2; s_2$ mean “becomes after 0 or more steps”

Pick a special “answer” variable ans

The program s produces c if $\cdot; s \rightarrow^* H; \text{skip}$ and $H(\text{ans}) = c$

Does every s produce a c?

Example program execution

```
x := 3; (y := 1; while x (y := y * x; x := x − 1))
```

Let’s write some of the state sequence. You can justify each step with a full derivation. Let $s = (y := y * x; x := x − 1)$.

```
\cdot; x := 3; y := 1; while x s
  \rightarrow \cdot, x \rightarrow 3; \text{skip}; y := 1; while x s
  \rightarrow \cdot, x \rightarrow 3; y := 1; while x s
  \rightarrow^2 \cdot, x \rightarrow 3, y \rightarrow 1; while x s
  \rightarrow \cdot, x \rightarrow 3, y \rightarrow 1; if x (s; while x s) skip
  \rightarrow \cdot, x \rightarrow 3, y \rightarrow 1; y := y * x; x := x − 1; while x s
```

Boyana Norris
CIS 624 2014, Lecture 3
Continued...

\[
\begin{align*}
\rightarrow^2 & \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ x := x - 1; \ \textbf{while} \ x \ s \\
\rightarrow^2 & \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \ \textbf{while} \ x \ s \\
\rightarrow & \quad \ldots, y \mapsto 3, x \mapsto 2; \ \textbf{if} \ x \ (s; \ \textbf{while} \ x \ s) \ \textbf{skip} \\
\ldots \\
\rightarrow & \quad \ldots, y \mapsto 6, x \mapsto 0; \ \textbf{skip}
\end{align*}
\]

Where we are

Defined \(H ; e \Downarrow c \) and \(H ; s \rightarrow H' ; s' \) and extended the latter to give \(s \) a meaning

- The way we did expressions is "large-step operational semantics"
- The way we did statements is "small-step operational semantics"
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by "running" it

Example: Our last program terminates with \(x \) holding 0

We can prove a program diverges, i.e., for all \(H \) and \(n \), \(\cdot ; s \rightarrow^n H ; \textbf{skip} \) cannot be derived

Example: \textbf{while} 1 \textbf{skip}

By induction on \(n \), but requires a stronger induction hypothesis

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \(H \) and \(s \) have no negative constants and \(H ; s \rightarrow^* H' ; s' \), then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H ; (s_1 ; s_2) \) terminates.