Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

\[
\begin{align*}
s & ::= \text{skip} | x := e | s; s | \text{if } e \ s \ s | \text{while } e \ s \\
e & ::= c | x | e + e | e * e
\end{align*}
\]

(c ∈ {...,−2,−1,0,1,2,...})

(x ∈ {x1,x2,...,y1,y2,...,z1,z2,...,...})

Syntax Definition

\[
s ::= \text{skip} | x := e | s; s | \text{if } e \ s \ s | \text{while } e \ s
\]

\[
e ::= c | x | e + e | e * e
\]

Children are more abstract syntax (subtrees) from the appropriate syntax class

Metavariables represent “anything in the syntax class”

By abstract syntax, we mean that this defines a set of trees

- Node has some label for “which alternative”
- Children are more abstract syntax (subtrees) from the appropriate syntax class

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if \(x \) skip \(y := 42 ; x := y \) versus (if \(x \) skip \(y := 42 \)); \(x := y \)

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

- Trees are our “truth” with strings as a “convenient notation”

Comparison to ML

ML needs “extra nodes” for, e.g., “\(e \) can be a \(c \)”

Also pretending ML’s int is an integer
Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

Inductive definition

\[
\begin{align*}
s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s
\end{align*}
\]

\[
\begin{align*}
e & ::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

- Let \(E_0 = \emptyset \)
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2 \), or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”
- Let \(E = \bigcup_{i \geq 0} E_i \)

The set \(E \) is what we mean by our compact metanotation

Review of Mathematical Induction

A proof by induction that the property \(P(n) \) holds for \(n \in \mathbb{N} \) involves these steps:

- Prove directly that \(P \) is correct for the initial value of \(n \) (for most examples you will see this is zero or one). This is called the base case.
- Assume for some value \(k \) that \(P(k) \) is correct. This is called the induction hypothesis \((IH) \). We will now prove directly that \(P(k) \Rightarrow P(k+1) \). That means prove directly that \(P(k+1) \) is correct by using the fact that \(P(k) \) is correct. This is called the induction step.

Our First Theorem

All we have is syntax (sets of abstract-syntex trees), but let’s get the idea of proving things carefully...

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntex trees), but let’s get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, for all $e \in E_i$, e has ≥ 1
constant or variable.

▶ Base: $i = 0$ implies $E_i = \emptyset$
▶ Inductive: $i > 0$. Consider arbitrary $e \in E_i$ by cases:
 ▶ $e \in E_{i-1} \ldots$
 ▶ $e = c \ldots$
 ▶ $e = x \ldots$
 ▶ $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1} \ldots$
 ▶ $e = e_1 * e_2$ where $e_1, e_2 \in E_{i-1} \ldots$

A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an
expression) e. Cases:

▶ $c \ldots$
▶ $x \ldots$
▶ $e_1 + e_2 \ldots$
▶ $e_1 * e_2 \ldots$

Structural induction invokes the induction hypothesis on smaller
terms. It is equivalent to the pedantic proof, and more convenient
in PL.