CIS 624: Structure of Programming Languages

Lecture 2 — Syntax

Boyana Norris
2014
Finally, some formal PL content

For our first *formal language*, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common *metalanguage*:

“A program is a statement s, which is defined as follows”

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e & ::= c \mid x \mid e + e \mid e * e \\
 (c & \in \{ \ldots, -2, -1, 0, 1, 2, \ldots \}) \\
 (x & \in \{ x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]
Syntax Definition

\[
s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e s s \mid \text{while } e s \\
\]

\[
e ::= c \mid x \mid e + e \mid e * e \\
(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\]

- **Blue** is metanotation: ::= for “can be a” and \mid for “or”

- **Metavariables** represent “anything in the syntax class”

- By *abstract syntax*, we mean that this defines a set of *trees*
 - Node has some label for “which alternative”
 - Children are more abstract syntax (subtrees) from the appropriate syntax class
Examples

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e s s \mid \text{while } e s \\
 e &::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

\[
\begin{array}{c}
\text{if} \\
\quad x \\
\quad \text{skip} \\
\quad ; \\
\quad := \\
\quad \quad := \\
\quad \quad \quad \quad y \ 42 \ x \ y
\end{array}
\quad
\begin{array}{c}
\quad \text{if} \\
\quad \quad x \\
\quad \quad \text{skip} \\
\quad \quad := \\
\quad \quad \quad x \ y
\end{array}
\quad
\begin{array}{c}
\quad ; \\
\quad := \\
\quad \quad y \ 42
\end{array}
\]
Comparison to ML

```plaintext
type exp = Const of int | Var of string
  | Add of exp * exp | Mult of exp * exp

type stmt = Skip | Assign of string * exp | Seq of stmt * stmt
  | If of exp * stmt * stmt | While of exp * stmt

If(Var("x"), Skip, Seq(Assign("y", Const 42), Assign("x", Var "y")))
Seq(If(Var("x"), Skip, Assign("y", Const 42)), Assign("x", Var "y"))
```

Very similar to trees built with ML datatypes
▶ ML needs “extra nodes” for, e.g., “e can be a c”
▶ Also pretending ML’s int is an integer
Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: \texttt{if x skip y := 42 ; x := y}

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

- Trees are our “truth” with strings as a “convenient notation”

\texttt{if x skip (y := 42 ; x := y) versus (if x skip y := 42) ; x := y}
Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design
 ▶ Always trivial if you require enough parentheses or keywords
 ▶ Extreme case: LISP, 1960s; Scheme, 1970s
 ▶ Extreme case: XML, 1990s
 ▶ Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax
 ▶ Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean
Inductive definition

\[
\begin{align*}
s &::= \text{skip} \mid x ::= e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction

▶ Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

▶ Let \(E_0 = \emptyset \)

▶ For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”

▶ Let \(E = \bigcup_{i \geq 0} E_i \)

The set \(E \) is what we mean by our compact metanotation
Inductive definition

\[
\begin{align*}
s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \text{ or } e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?
Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

![Comic strip showing different methods of proving things:]
- **Proof by Omission**: As you can clearly see...
- **Proof by Vigorous Hand-waving**: The proof is trivial.
- **Proof by Intimidation**: The details are easily supplied.
- **Proof by Deferral**: The proof will be shown later in the course.
A proof by induction that the property $P(n)$ holds for $n \in \mathbb{N}$ involves these steps:

- Prove directly that P is correct for the initial value of n (for most examples you will see this is zero or one). This is called the **base case**.

- Assume for some value k that $P(k)$ is correct. This is called the **induction hypothesis** (IH). We will now prove directly that $P(k) \Rightarrow P(k + 1)$. That means prove directly that $P(k + 1)$ is correct by using the fact that $P(k)$ is correct. This is called the **induction step**.
Our First Theorem

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, for all $e \in E_i$, e has ≥ 1 constant or variable.

- **Base**: $i = 0$ implies $E_i = \emptyset$
- **Inductive**: $i > 0$. Consider *arbitrary* $e \in E_i$ by cases:
 - $e \in E_{i-1}$ …
 - $e = c$ …
 - $e = x$ …
 - $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1}$ …
 - $e = e_1 \ast e_2$ where $e_1, e_2 \in E_{i-1}$ …
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By \textit{structural induction} on (rules for forming an expression) e. Cases:

\begin{itemize}
\item $c \ldots$
\item $x \ldots$
\item $e_1 + e_2 \ldots$
\item $e_1 \ast e_2 \ldots$
\end{itemize}

Structural induction invokes the induction hypothesis on \textit{smaller} terms. It is equivalent to the pedantic proof, and more convenient in PL