CIS 624: Structure of Programming Languages

Lecture 10 — Type-Safety Proof

Boyana Norris
2014
Outline

- Type-safety proof
 - Also posted in non-slide form

- Discuss the proof
 - Consider lemma dependencies and what they represent
 - Consider elegance of inverting static and dynamic derivations

- Next lecture: Add more constructs to our typed language
 - Pairs, records, sums, recursion, ...
 - For each, sketch proof additions (follow a general approach)

- Further ahead: More flexible typing via polymorphism
Review: Lambda-Calculus with Constants

\[e ::= \lambda x. \ e \mid x \mid e \ e \mid c \quad v ::= \lambda x. \ e \mid c \]

\[
\begin{align*}
(\lambda x. \ e) \ v & \to e[v/x] & e_1 & \to e'_1 & e_2 & \to e'_2 \\
& & e_1 \ e_2 & \to e'_1 \ e_2 & & v \ e_2 & \to v \ e'_2 \\
& & & & y \neq x & y[e/x] & = y & c[e/x] & = c
\end{align*}
\]

\[
\begin{align*}
e_1[e/x] & = e'_1 & y \neq x & y \not\in FV(e) & e_1[e/x] & = e'_1 & e_2[e/x] & = e'_2 \\
(\lambda y. \ e_1)[e/x] & = \lambda y. \ e'_1 & (e_1 \ e_2)[e/x] & = e'_1 \ e'_2
\end{align*}
\]

Stuck states: not values and no step applies...

Avoid stuck states to:

- Catch bugs (why would you want to get to such a state?)
- Ease implementation (no need to check for being stuck)
Review: Typing Judgment

Defined a type system to classify λ-terms

Some terms have types; some don’t

$$\tau ::= \text{int} \mid \tau \rightarrow \tau \quad \Gamma ::= \cdot \mid \Gamma, x : \tau$$

$$\Gamma \vdash c : \text{int} \quad \Gamma \vdash x : \Gamma(x) \quad \Gamma, x : \tau_1 \vdash e : \tau_2$$

$$\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2$$

$$\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2$$

$$\Gamma \vdash e_1 \ e_2 : \tau_1$$

Theorem: A program that typechecks under \cdot won’t get stuck, i.e., if $\cdot \vdash e : \tau$ then e diverges or $\exists v, n$ such that $e \rightarrow^n v$
Preservation and Progress

Theorem (slightly restated): If \(\cdot \vdash e : \tau \) and \(e \rightarrow^n e' \), then \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \)

Follows from two key lemmas:

- **Lemma (Preservation)**: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).
- **Lemma (Progress)**: If \(\cdot \vdash e : \tau \), then \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow e' \).

Proof of theorem given lemmas:

- "Preservation*": If \(\cdot \vdash e : \tau \) and \(e \rightarrow^n e' \), then \(\cdot \vdash e' : \tau \)
 - Trivial induction on \(n \) given Preservation
 - So Progress ensures \(e' \) is not stuck
Progress

Lemma: If \(\cdot \vdash e : \tau \), then \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow e' \)

Proof: We first prove this lemma:

Lemma (Canonical Forms): If \(\cdot \vdash v : \tau \), then:

- if \(\tau \) is \texttt{int}, then \(v \) is some \(c \)
- if \(\tau \) has the form \(\tau_1 \rightarrow \tau_2 \) then \(v \) has the form \(\lambda x. e \)

Proof: By inspection of the form of values and typing rules

- That is, by inversion, only one typing rule applies if \(\tau = \texttt{int} \)
 and in that rule \(v \) is a constant, and similarly for \(\tau_1 \rightarrow \tau_2 \)

Now prove Progress by induction on the derivation of \(\cdot \vdash e : \tau \)
Progress: Induction on derivation of $\cdot \vdash e : \tau$

Derivation must end with one of four rules:

- $\cdot \vdash x : \tau$ — impossible because $\cdot \vdash e : \tau$
- $\cdot \vdash c : \text{int}$ — then e is a value
- $\cdot \vdash \lambda x. e : \tau$ — then e is a value
- $\cdot \vdash e_1 \ e_2 : \tau$ where $\exists \tau'$. $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and $\cdot \vdash e_2 : \tau'$

 By induction e_1 is some v_1 or can become some e'_1.

 If it can become e'_1, then $e_1 \ e_2 \rightarrow e'_1 \ e_2$.

 Else by induction e_2 is some v_2 or can become some e'_2.

 If it becomes e'_2, then $v_1 \ e_2 \rightarrow v_1 \ e'_2$.

 Else e is $v_1 \ v_2$.

$\cdot \vdash v_1 : \tau' \rightarrow \tau$ and Canonical Forms ensures v_1 has the form $\lambda x. e'$.

So $v_1 \ v_2 \rightarrow e'[v_2/x]$.
Preservation

Lemma: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \)

Proof: By induction on the derivation of \(\cdot \vdash e : \tau \). Bottom rule could conclude:

- \(\cdot \vdash x : \tau \) — actually, it can’t; \(\cdot (x) \) is undefined
- \(\cdot \vdash c : \text{int} \) — then \(e \rightarrow e' \) is impossible, so lemma holds \textit{vacuously}
- \(\cdot \vdash \lambda x. e : \tau \) — then \(e \rightarrow e' \) is impossible, so lemma holds \textit{vacuously}
- \(\cdot \vdash e_1 \; e_2 : \tau \) where \(\exists \tau'. \; \cdot \vdash e_1 : \tau' \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau' \)

There are 3 ways \(e_1 \; e_2 \rightarrow e' \) could be derived. Subcase for each ...
Preservation, $e = e_1 \ e_2$ case

We have: $\cdot \vdash e_1 : \tau' \rightarrow \tau$, $\cdot \vdash e_2 : \tau'$, and $e_1 \ e_2 \rightarrow e'$.
We need: $\cdot \vdash e' : \tau$.

The derivation of $e_1 \ e_2 \rightarrow e'$ ensures 1 of these:

- e' is $e'_1 \ e_2$ and $e_1 \rightarrow e'_1$:

 So with $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and induction, $\cdot \vdash e'_1 : \tau' \rightarrow \tau$.

 So with $\cdot \vdash e_2 : \tau'$ we can derive $\cdot \vdash e'_1 \ e_2 : \tau$.

- e' is $e_1 \ e'_2$ and $e_2 \rightarrow e'_2$:

 So with $\cdot \vdash e_2 : \tau'$ and induction, $\cdot \vdash e'_2 : \tau'$.

 So with $\cdot \vdash e_1 : \tau' \rightarrow \tau$ we can derive $\cdot \vdash e_1 \ e'_2 : \tau$.

- e_1 is some $\lambda x. \ e_3$ and e_2 is some v and e' is $e_3[v/x]$

 Inverting $\cdot \vdash \lambda x. \ e_3 : \tau' \rightarrow \tau$ gives $\cdot, x: \tau' \vdash e_3 : \tau$.

 So it would suffice to know: If $\cdot, x: \tau' \vdash e_3 : \tau$ and $\cdot \vdash e_2 : \tau'$, then $\cdot \vdash e_3[e_2/x] : \tau$.

 That’s true but we need to prove it via a Substitution Lemma.

Lemma (Substitution): If $\Gamma, x: \tau' \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau'$, then $\Gamma \vdash e_1[e_2/x] : \tau$.
Where are we

Almost done with Preservation, but in the case where

\((\lambda x. \, e_3) \, e_2 \rightarrow e_3[e_2/x]\), need:

If \(\cdot, x: \tau' \vdash e_3 : \tau\) and \(\cdot \vdash e_2 : \tau'\), then \(\cdot \vdash e_3[e_2/x] : \tau\).

▶ Intuitive: Replace assumption that \(x : \tau'\) with an expression that has type \(\tau'\)

▶ But we need an inductive proof because \(e_3\) can be arbitrarily big and substitution is a subtle thing

Prove this lemma: If \(\Gamma, x: \tau' \vdash e_1 : \tau\) and \(\Gamma \vdash e_2 : \tau'\), then \(\Gamma \vdash e_1[e_2/x] : \tau\).

▶ “Renaming” \(e_3\) to \(e_1\) in our “helper lemma” (no big deal)

▶ Strengthened induction hypothesis to work for any \(\Gamma\)

▶ Else the proof will fail
Proving the Substitution Lemma

If \(\Gamma, x:\tau' \vdash e_1 : \tau \) and \(\Gamma \vdash e_2 : \tau' \), then \(\Gamma \vdash e_1[e_2/x] : \tau \)

Proof: By induction on derivation of \(\Gamma, x:\tau' \vdash e_1 : \tau \)

- \(\Gamma, x:\tau' \vdash c : \text{int} \). Then \(c[e_2/x] = c \) and \(\Gamma \vdash c : \text{int} \)
- \(\Gamma, x:\tau' \vdash y : (\Gamma, x:\tau')(y) \).
 Either \(y = x \) or \(y \neq x \).
 If \(y = x \), then \((\Gamma, x:\tau')(x) \) is \(\tau' \) (i.e., \(\tau = \tau' \)) and \(x[e_2/x] \) is \(e_2 \). So \(\Gamma \vdash e_2 : \tau' \) satisfies the lemma.
 If \(y \neq x \), then \((\Gamma, x:\tau')(y) \) is \(\Gamma(y) \) and \(y[e_2/x] \) is \(y \). So we can derive \(\Gamma \vdash y : \Gamma(y) \).
- \(\Gamma, x:\tau' \vdash e_a e_b : \tau \).
 Then \(\exists \tau_b \) where \(\Gamma, x:\tau' \vdash e_a : \tau_b \to \tau \) and \(\Gamma, x:\tau' \vdash e_b : \tau_b \).
 So by induction \(\Gamma \vdash e_a[e_2/x] : \tau_b \to \tau \) and \(\Gamma \vdash e_b[e_2/x] : \tau_b \).
 So we can derive \(\Gamma \vdash e_a[e_2/x] e_b[e_2/x] : \tau \).
 And \((e_a e_b)[e_2/x] = e_a[e_2/x] e_b[e_2/x] \).
- Only the (nested) function case is left ...
Still Proving Substitution

If $\Gamma, x:\tau' \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau'$, then $\Gamma \vdash e_1[e_2/x] : \tau$

Proof: By induction on derivation of $\Gamma, x:\tau' \vdash e_1 : \tau$

The last case uses these two technical lemmas (easy inductions):

- Exchange: If $\Gamma, x:\tau_1, y:\tau_2 \vdash e : \tau$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e : \tau$
- Weakening: If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x:\tau' \vdash e : \tau$.

The last case:

- $\Gamma, x:\tau' \vdash \lambda y. e_a : \tau$. (can assume $y \neq x$ and $y \notin \text{Dom}(\Gamma)$)
 Then $\exists \tau_a, \tau_b$ where $\Gamma, x:\tau', y:\tau_a \vdash e_a : \tau_b$ and $\tau = \tau_a \rightarrow \tau_b$.
 By Exchange $\Gamma, y:\tau_a, x:\tau' \vdash e_a : \tau_b$.
 By Weakening and $\Gamma \vdash e_2 : \tau'$, we know $\Gamma, y:\tau_a \vdash e_2 : \tau'$.
 So by induction (using $\Gamma, y:\tau_a$ for Γ), $\Gamma, y:\tau_a \vdash e_a[e_2/x] : \tau_b$.
 - (This is where we needed the stronger induction hypothesis)
 So we can derive $\Gamma \vdash \lambda y. e_a[e_2/x] : \tau_a \rightarrow \tau_b$.
 And $(\lambda y. e_a)[e_2/x]$ is $\lambda y. (e_a[e_2/x])$.

Boyana Norris
CIS 624 2014, Lecture 10
Lemma dependencies

Safety (evaluation never gets stuck)
 ▶ Preservation (to stay well-typed)
 ▶ Substitution (β-reduction stays well-typed)
 ▶ Weakening (substituting under nested λs well-typed)
 ▶ Exchange (technical point)
 ▶ Progress (well-typed not stuck yet)
 ▶ Canonical Forms (primitive reductions apply where needed)

Comments:
 ▶ Substitution strengthened to open terms for the proof
 ▶ When we add heaps, Preservation will use Weakening directly
Summary

What may seem a weird lemma pile is a powerful recipe:

Soundness: We don’t get stuck because our induction hypothesis (typing) holds (Preservation) and stuck terms aren’t well typed (contrapositive of Progress)

Preservation holds by induction on typing (replace subterms with same type) and Substitution (for β-reduction). Substitution must work over open terms and requires Weakening and Exchange.

Progress holds by induction on expressions (or typing) because either a subexpression progresses or we can make a primitive reduction (using Canonical Forms).
Induction on derivations – Another Look

Application cases \((e = e_1 e_2)\) are elegant and worth mastering

- Other constructs with eager evaluation of subexpressions would work analogously (e.g., \(e_1 + e_2\) or \((e_1, e_2)\))

For Preservation, lemma assumes \(\cdot \vdash e_1 e_2 : \tau\).

Inverting the typing derivation ensures it has the form:

\[
\begin{align*}
D_1 & \quad \cdot \vdash e_1 : \tau' \rightarrow \tau \\
D_2 & \quad \cdot \vdash e_2 : \tau'
\end{align*}
\]

\(\cdot \vdash e_1 e_2 : \tau\)

One Preservation subcase: If \(e_1 e_2 \rightarrow e'_1 e_2\), inverting that derivation means:

\[
\begin{align*}
D & \quad e_1 \rightarrow e'_1 \\
\hline
\quad e_1 e_2 \rightarrow e'_1 e_2
\end{align*}
\]
continued...

The inductive hypothesis means there is a derivation of this form:

$$
\begin{array}{c}
\text{\textit{D}$_3$} \\
\cdot \vdash e'_1 : \tau' \rightarrow \tau
\end{array}
$$

So a derivation of this form exists:

$$
\begin{array}{c}
\text{\textit{D}$_3$} \\
\cdot \vdash e'_1 : \tau' \rightarrow \tau
\end{array} \quad \begin{array}{c}
\text{\textit{D}$_2$} \\
\cdot \vdash e_2 : \tau'
\end{array} \\
\cdot \vdash e'_1 \ e_2 : \tau
$$

(The app case of the Substitution Lemma is similar but we use induction twice to get the new derivation)