Program State

At any state of computation, we may want to evaluate a predicate (logical statement involving constants and values of program variables) describing the state; for instance, \(x := 1; \) \(\{ x = 1 \} \) will evaluate to `TRUE`; if \(A[1..3] \) is an array with entries 9, 5, 2, then the predicate \(\{ \forall i, j : 1 \leq i \leq j \leq 3 : A[i] \leq A[j] \} \) (we may call it ”Sorted(A, 1, 3)”) will be true.

We will treat program segments as “predicate transformers” in a notation \(\{ P_1 \} S \{ P_2 \} \) meaning

"if program segment \(S \) is executed in the state when \(P_1 \) is true then, upon termination, the state of computation will be such that \(P_2 \) will be true."

(If we don’t discuss termination, this is considered a “partial correctness” argument.)

Loop Invariant

Loop \(L: \) while \(C \) do \(B \)

We want to show \(\{ P \} \) while \(C \) do \(B \) \(\{ Q \} \)

where

\(P \) the initial state

\(Q \) the goal (final) state

\(C \) the condition

\(B \) the body of the loop

Partial Correctness

\(I \) is an invariant of \(L \) if \(\{ C \land I \} B \{ I \} \)

\(I \) is a useful invariant (for the purpose of showing \(\{ P \} L \{ Q \} \)) if \(P \Rightarrow I \) (”the base case of induction”) and \(I \land \neg C \Rightarrow Q \).

Termination (Total Correctness)

\(t \) is a termination function (integer-valued) if \(\{ (t = t_0) \land C \land I \} B \{ t < t_0 \} \)

and \(t \leq 0 \Rightarrow \neg C \).
HeapSort

Consider the following program segment purporting to sort in non-increasing manner elements of an array $A[1..n]$ ($n > 0$):

Heapify($A, 1, n$); \{Heap[$A[1..n]$]\}

$i := n$;
\{P\}
while $i > 1$ do
begin swap($A, 1, i$); $i := i - 1$; sift($A, 1, i$) end;
\{Q\}

where
$P : (n \geq 1) \land (A = a) \land $ Heap($A, 1, n$)
$Q : Sorted(A, 1, n) \land (1 \leq i \leq n)$

A useful invariant is
$I : Perm(A, a) \land $ Heap($A, 1, i$) \land (1 \leq i \leq n) \land
(\forall p, q : (i \leq p \leq n) \land (1 \leq q \leq n) : q \leq p \Rightarrow A[p] \leq A[q]$)

Exponentiation

To raise an integer x to a non-negative power y, we can do better than multiplying $x \cdot y$ times (the algorithm is patterned on one that is sometimes called “Russian Peasant’s multiplication: $p \cdot q$ is (almost, when the division gives an integer result) $2p \cdot q/2$.)

$a := x$; $b := y$; $c := 1$;
while $b > 0$ do
begin
while even(b) do begin $a := a \cdot a$; $b := b \div 2$ end;
$b := b - 1$; $c := c \cdot a$
end

The invariant of the inner loop is $I_{inn} : a^b = d$; some constant d_1
for the outer loop we have $I_{out} : c \cdot a^b = d_2$; some constant d_2.

2