to cause problems in practice, as we can usually use any depth-first search result effectively, with essentially equivalent results.

What is the running time of DFS? The loops on lines 1–3 and lines 5–7 of DFS take time $\Theta(V)$, exclusive of the time to execute the calls to DFS-VISIT. As we did for breadth-first search, we use aggregate analysis. The procedure DFS-VISIT is called exactly once for each vertex $v \in V$, since the vertex u on which DFS-VISIT is invoked must be white and the first thing DFS-VISIT does is paint vertex u gray. During an execution of DFS-VISIT(G, v), the loop on lines 4–7 executes $|\text{Adj}[v]|$ times. Since

$$\sum_{v \in V} |\text{Adj}[v]| = \Theta(E),$$

the total cost of executing lines 4–7 of DFS-VISIT is $\Theta(E)$. The running time of DFS is therefore $\Theta(V + E)$.

Properties of depth-first search

Depth-first search yields valuable information about the structure of a graph. Perhaps the most basic property of depth-first search is that the predecessor subgraph G_x does indeed form a forest of trees, since the structure of the depth-first trees exactly mirrors the structure of recursive calls of DFS-VISIT. That is, $u = v \pi$ if and only if DFS-VISIT(G, v) was called during a search of u's adjacency list. Additionally, vertex v is a descendant of vertex u in the depth-first forest if and only if v is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery and finishing times have a parenthesis structure. If we represent the discovery of vertex u with a left parenthesis "($u" and represent its finishing by a right parenthesis ")$u"$, then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested. For example, the depth-first search of Figure 22.5(a) corresponds to the parenthesization shown in Figure 22.5(b). The following theorem provides another way to characterize the parenthesis structure.

Theorem 22.7 (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph $G = (V, E)$, for any two vertices u and v, exactly one of the following three conditions holds:

- the intervals $[u.d, u.f]$ and $[v.d, v.f]$ are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest,
- the interval $[u.d, u.f]$ is contained entirely within the interval $[v.d, v.f]$, and u is a descendant of v in a depth-first tree, or
- the interval $[v.d, v.f]$ is contained entirely within the interval $[u.d, u.f]$, and v is a descendant of u in a depth-first tree.
The following linear-time (i.e., $O(V + E)$-time) algorithm computes the strongly connected components of a directed graph $G = (V, E)$ using two depth-first searches, one on G and one on G^T.

STRONGLY-CONNECTED-COMPONENTS(G)

1. call DFS(G) to compute finishing times $u.f$ for each vertex u
2. compute G^T
3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing $u.f$ (as computed in line 1
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

The idea behind this algorithm comes from a key property of the component graph $G^{SCC} = (V_{SCC}, E_{SCC})$, which we define as follows. Suppose that G has strongly connected components C_1, C_2, \ldots, C_k. Let V_{SCC} be the set of vertices v_i for each strongly connected component C_i of G. There is an edge $(v_i, v_j) \in E_{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and some $y \in C_j$. Looked at another way, by contracting all edges whose incident vertices are within the same strongly connected component of G, the resulting graph is G^{SCC}. Figure 22.9(c) shows the component graph of the graph in Figure 22.9(a).

The key property is that the component graph is a dag, which the following lemma implies.

Lemma 22.13

Let C and C' be distinct strongly connected components in directed graph $G = (V, E)$, let $u, v \in C$, let $u', v' \in C'$, and suppose that G contains a path $u \rightarrow u'$. Then G cannot also contain a path $v' \rightarrow v$.

Proof
If G contains a path $v' \rightarrow v$, then it contains paths $u \rightarrow u' \rightarrow v'$ and $v' \rightarrow v \rightarrow u$, thus u and v' are reachable from each other, thereby contradicting the assumption that C and C' are distinct strongly connected components.

Our algorithm for finding strongly connected components of a graph $G = (V, E)$ uses the transpose of G, which we defined in Exercise 22.1-3 to be the graph $G^T = (V, E^T)$, where $E^T = \{(v, u) : (v, u) \in E\}$. That is, E^T consists of the edges of G with their directions reversed. Given an adjacency-list representation of G, the time to create G^T is $O(V + E)$. It is interesting to observe that G and G^T have exactly the same strongly connected components: u and v are reachable from each other in G if and only if they are reachable from each other in G^T. Figure 22.9(b) shows the transpose of the graph in Figure 22.9(a), with the strongly connected components shaded.