x. Greedy Loop Invariant – extra point

An element \(x \) is the majority element in a multiset \(S \) if its multiplicity exceeds that of all the other elements combined.

(i) Prove that deleting two unequal elements from \(S \) preserves the identity of the majority element, if one exists: Assume \(|S| = n \) and multiplicity of \(x, m_S(x) > n/2 \). There are two cases of deleting two unequal elements of \(S \).

1. None of the deleted elements is \(x \). Then the multiplicity of \(x \) in \(S' = S \setminus \{y, z\} \) is \(m_{S'} = m_S(x) > n/2 > (n - 2)/2 = |S'|/2 \), ie., \(x \) remains a majority element of \(S' \).

2. One of the deleted elements is \(x \). Then the multiplicity of \(x \) in \(S' = S \setminus \{y, x\} \) is \(m_{S'} = m_S(x) - 1 > n/2 - 1 = (n - 2)/2 = |S'|/2 \), ie., \(x \) remains a majority element of \(S' \).

(ii) Based on this invariant, provide a linear time algorithm to determine the majority element in a given multiset, if such a majority exists.

Such an algorithm is allowed only a constant number of examinations per element of the given set. Maintaining the lower bound on the multiplicity \(m > 0 \) of the purported majority element so far, candidate, the algorithm compares candidate with the next element. If they are identical, \(m \) is incremented, otherwise it is decremented (as both elements are deleted). If \(m = 0 \) (true initially) candidate takes the identity of next and \(m \) is incremented. When next no longer exists (unequal pairs have been deleted), only the candidate can be the majority element, which can be checked by an additional scan of the set.