This is the usual open-everything, no web search and no outside help take-home test.

Check "Class News", where I will post “frequently asked questions” about the test.

1. Amortized Complexity of Union – Find

Here we assume that we have a partition of n elements into disjoint sets, where each set is represented by a tree in which non-root nodes have pointers to their parent nodes.

*(Hint: The gist of (i) is that even though path compression shortens some paths, the arbitrary link in *Union* can recreate a “tall” tree. A constraint on the string of operations in (ii) may prohibit that, hinting at what a “bad” string in (i) may look like.)*

(i) Show that *Find* with path compression alone (without a smarter *Union* than an arbitrary link of roots) has $\Omega(\log n)$ amortized complexity.

(ii) Show that in the implementation as in (i) (with an arbitrary link) the amortized complexity of *Find* is constant if all *Union* operations precede any *Find* operation.

x. Greedy Loop Invariant – extra point

An element x is the majority element in a multiset S if its multiplicity exceeds that of all the other elements combined.

(i) Prove that deleting two unequal elements from S preserves the identity of the majority element, if one exists.

(ii) Based on this invariant, provide a linear time algorithm to determine the majority element in a given multiset, if such a majority exists.
2. Greedy Loop Invariant

This problem pertains to the construction of an optimal prefix-free binary code tree for \(n \) messages by the Huffman algorithm. Assume that the probabilities of message transmission are given in the non-decreasing order: \(p_1 \leq p_2 \leq \cdots \leq p_n \). (An essential assumption!)

(i) Prove the following invariant of the algorithm constructing a binary tree representing an optimal code: The pseudo-messages that represent the parents of deleted lowest frequency nodes are created and removed in nondecreasing order of their frequencies. ("Pseudo-messages" are the internal nodes of the code tree in which the messages are leaves.)

(ii) Write a pseudocode implementing the construction algorithm to perform in linear time while maintaining the above invariant. Prove its correctness. Make sure to describe a data structure taking advantage of the invariant.

3. Divide and Conquer

Analyze correctness and complexity of the following algorithm for order statistics algorithm selecting the \(k \)th smallest out of \(n \) elements \(a_1, a_2, \ldots, a_n \):

If \(n < 20 \) (an arbitrary constant) use brute force, otherwise

(i) Select the middle (second smallest) element \(m_i \) of each triple of numbers \((a_1, a_2, a_3), \ldots, (a_{n-2}, a_{n-1}, a_n) \);

(ii) Recursively find the median (\(\frac{n}{6} \)th smallest) element \(M \) of these \(\frac{n}{6} \) numbers;

(iii) Partition the original \(n \) numbers into those smaller than \(M \), say \(b_1, b_2, \ldots, b_m \) and the rest \(b_{m+1}, \ldots, b_n \);

(iv) If \(k \leq m \) then recursively find the \(k \)th smallest among \(b_1, b_2, \ldots, b_m \), otherwise find the \((k-m) \)th smallest among \(b_{m+1}, \ldots, b_n \).

4. Fancy Fourier

Not really FFT but something closely related.

(i) Describe a result of multiplying two expressions: \(A(x) = q_1 x^1 + q_2 x^2 + \cdots + q_n x^n \) and \(B(x) = \frac{1}{n^2} x^n + \frac{1}{(n-1)^2} x^{n-1} + \cdots + \frac{1}{4} x^2 + x - x^{-1} - \frac{1}{4} x^{-2} - \cdots - \frac{1}{(n-1)^2} x^{-n+1} - \frac{1}{n^2} x^{-n} \) (a general coefficient of the resulting expression will suffice.)

(ii) Using the result of (i) above, solve the problem 5.4 (page 247 in text.) Provide a high level description with some details rather than a piece of code.