Machine Learning: CIS 472/572

Introduction

Instructor: Daniel Lowd
Based on slides by Vibhav Gogate, Pedro Domingos, and others.

Evaluation

• 3-5 homeworks (40%)
 – Some programming, some exercises
• One Midterm (25%)
 – 2/3rds of the way through
• One Project (30%)
 – Apply machine learning to a real problem of your choice
 – Groups allowed
 – Written report
 – Presentations during final exam time
 – More details will be announced soon
• Participation (5%)

Source Materials

• K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012. (Recommended, in bookstore)
• T. Mitchell, Machine Learning, McGraw-Hill, 1997. (Recommended, but old and expensive)
• C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
• R. Duda, P. Hart & D. Stork, Pattern Classification (2nd ed.), Wiley, 2000
• D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012. (Free online!)
• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2009. (Free online!)

Why Study Machine Learning:
A Few Quotes

“A breakthrough in machine learning would be worth ten Microsofts.”
-Bill Gates, Microsoft

“Machine learning is the next Internet.”
-Tony Tether, Former Director, DARPA

“Machine learning is the hot new thing.”
-John Hennessy, President, Stanford

“Web rankings today are mostly a matter of machine learning.”
-Prabhakar Raghavan, Dir. Research, Yahoo

“Machine learning is going to result in a real revolution.”
-Greg Papadopoulos, CTO, Sun

So What Is Machine Learning?

• Automating automation
• Getting computers to program themselves
• Writing software is the bottleneck
• Let the data do the work instead!
Traditional Programming

- Automating automation
- Getting computers to program themselves

Machine Learning

Related Fields

- Fields that use machine learning:
 - Artificial intelligence
 - Computer vision
 - Natural language processing
 - Computational biology
 - Robotics
 - ...many more...
- Fields with similar goals to machine learning:
 - Statistics
 - Data mining
 - Data science
 - Psychology (developmental, cognitive)
- Fields used by machine learning:
 - Information theory
 - Numerical optimization
 - Computational complexity

Definition: Machine Learning!

- T. Mitchell: Improving performance via experience
 - A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience.

Example 1: A Chess learning problem

- Task T: playing chess
- Performance measure P: percent of games won against opponents
- Training Experience E: playing practice games against itself

Example 2: Autonomous Vehicle Problem

- Task T: driving on a public highway/roads using vision sensors
- Performance Measure P: percentage of time the vehicle is involved in an accident
- Training Experience E: a sequence of images and steering commands recorded while observing a human driver

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs
ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

- Decision trees
- Instances
- Linear function (hyperplane)
- Neural networks
- Support vector machines
- Model ensembles
 - (Sets of rules / Logic programs)
 - (Graphical models (Bayes/Markov nets))
- Etc.

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Types of Learning

- **Supervised (inductive) learning**
 - Training data includes desired outputs
- **Unsupervised learning**
 - Training data does not include desired outputs
 - Find hidden structure in data
- **Semi-supervised learning**
 - Training data includes a few desired outputs
- **Reinforcement learning**
 - the learner interacts with the world via “actions” and tries to find an optimal policy of behavior with respect to “rewards” it receives from the environment

Types of Supervised Learning Problems

- Classification: learning to predict a discrete value from a predefined set of values
- Regression: learning to predict a continuous/real value
- Structured prediction: learning to predict a complex output, such as a sequence or tree
Machine Learning: Applications

Examples of what you will study in class in action!

Classification Example: Spam Filtering

Classify as “Spam” or “Not Spam”

Classification Example: Weather Prediction

Regression example: Predicting Gold/Stock prices

Given historical data on gold prices, predict tomorrow’s price!

Similarity Determination

Collaborative Filtering

- The problem of collaborative filtering is to predict how well a user will like an item that he has not rated given a set of historical preference judgments for a community of users.
Collaborative Filtering

Clustering: Discover Structure in data

Clustering images

Machine learning has grown in leaps and bounds

- The main approach for
 - Speech Recognition
 - Robotics
 - Natural Language Processing
 - Computational Biology
 - Sensor networks
 - Computer Vision
 - Web
 - ...and many more each year...

What We’ll Cover

- **Supervised learning**: Decision tree induction, Instance-based learning, Bayesian learning, Neural networks, Support vector machines, Linear Regression, Model ensembles, Learning theory, etc.
- **Unsupervised learning**: Clustering, Dimensionality reduction
- **General machine learning concepts and techniques**: Feature selection, cross-validation, maximum likelihood estimation, gradient descent, expectation-maximization

Not covering:

- Reinforcement learning (471/571)
- Graphical models (471/571, 410/510pm)
- Topic models ⊕