Model Ensembles

- **Basic idea:**
 Instead of learning one model,
 Learn several and combine them

- Typically improves accuracy, often by a lot

- **Many methods:**
 - Bagging
 - Boosting
 - ECOC (error-correcting output coding)
 - Stacking
 - Etc.
Bagging

- Generate “bootstrap” replicates of training set by sampling with replacement
- Learn one model on each replicate
- Combine by uniform voting
Boosting

- Maintain vector of weights for examples
- Initialize with uniform weights
- Loop:
 - Apply learner to weighted examples (or sample)
 - Increase weights of misclassified examples
- Combine models by weighted voting

\text{ADABOOST}(S, \text{Learn}, k)
\begin{align*}
S & : \text{Training set } \{(x_1, y_1), \ldots, (x_m, y_m)\}, \ y_i \in Y \\
\text{Learn} & : \text{Learner}(S, \text{weights}) \\
k & : \# \text{Rounds} \\
& \text{For all } i \text{ in } S: w_1(i) = 1/m \\
& \text{For } r = 1 \text{ to } k \text{ do} \\
& \quad \text{For all } i: p_r(i) = w_r(i)/\sum_i w_r(i) \\
& \quad h_r = \text{Learn}(S, p_r) \\
& \quad \epsilon_r = \sum_i p_r(i) \mathbf{1}[h_r(i) \neq y_i] \\
& \quad \text{If } \epsilon_r > 1/2 \text{ then} \\
& \quad \quad k = r - 1 \\
& \quad \quad \text{Exit} \\
& \quad \beta_r = \epsilon_r/(1 - \epsilon_r) \\
& \quad \text{For all } i: w_{r+1}(i) = w_r(i)\beta_r^{1-\mathbf{1}[h_r(x_i) \neq y_i]} \\
& \text{Output: } h(x) = \arg\max_{y \in Y} \sum_{r=1}^k \left(\log \frac{1}{\beta_r}\right) \mathbf{1}[h_r(x) = y]
\end{align*}
Boosting Example

[Diagram showing positive (+) and negative (-) symbols arranged in a pattern]

Boosting Example

[Diagram showing updated positive (+) and negative (-) symbols with a vertical line dividing them]
Boosting Example

[Diagram showing intermediate steps of boosting with positive and negative classes]

Boosting Example

[Diagram showing intermediate steps of boosting with positive and negative classes]
How Will # of Rounds Effect Generalization?

Expect
- Training error to drop or reach 0
- Test error to increase when h^* becomes too complex: “Occam’s razor” (i.e., overfitting)
- Hard to know when to stop training

Empirical Results

- Often, test error does not increase, even after 1000 rounds!
- Test error continues to drop, even after training error is 0!
- Occam’s razor: “simpler is better” appears to not apply!
Explanation: Margins

- Key idea:
 - Training error only measures whether classifications are right or wrong
 - Should also consider confidence of classifications
- h^* is weighted majority vote of weak classifiers
- Measure confidence by margin: Strength of vote
 - $(\text{weighted vote } +) - (\text{weighted vote } -)$

<table>
<thead>
<tr>
<th>High conf. -</th>
<th>Low conf.</th>
<th>High conf. +</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Effect of Boosting

- In the early iterations, boosting primarily reduces bias
- In later iterations, boosting primarily reduces variance (apparently)
AdaBoost Advantages

• Fast, simple and easy to program
• No parameters to tune (except T, sometimes)
• Flexible: works with any learning algorithm
• No prior knowledge needed about weak learner
• Provably effective, given weak classifier
• Versatile: can use with data that is textual, numeric, discrete, etc.
• Has been extended to learning problems well beyond binary classification

Boosting Conclusions

• Boosting is a practical tool for classification and other learning problems
 – Grounded in rich theory
 – Performs well experimentally
 – Often (not always!) resistant to overfitting
 – Many applications and extensions
• Many ways to think about why boosting works
 – None is entirely satisfactory
 – Considerable room for further theoretical and experimental work
Random Forests

A variant of BAGGING

Algorithm

Repeat k times

1. Draw with replacement N examples, put in train set
2. Build d-tree, but in each recursive call
 A. Choose (w/o replacement) i features
 B. Choose best of these i as the root of this (sub)tree
3. Do NOT prune

More on Random Forests

• Increasing i
 – Increases correlation among individual trees (BAD)
 – Also increases accuracy of individual trees (GOOD)

• Can use tuning set to choose good setting for i

• Overall, random forests
 – Are very fast (e.g., 50K examples, 10 features, 10 trees/min on 1 GHz CPU in 2004)
 – Deal with large # of features
 – Reduce overfitting substantially
 – Work very well in practice
Stacking

- Apply multiple base learners
 (e.g.: decision trees, naive Bayes, neural nets)
- Meta-learner: Inputs = Base learner predictions
- Training by leave-one-out cross-validation:
 Meta-L. inputs = Predictions on left-out examples

Error-Correcting Output Coding

- **Motivation:**
 Applying binary classifiers to multiclass problems
- **Train:** Repeat L times:
 - Form a binary problem by randomly assigning
classes to “superclasses” 0 and 1

 E.g.: A, B, D \rightarrow 0; C, E \rightarrow 1
 - Apply binary learner to binary problem
- Each class is represented by a binary vector
- **Test:**
 - Apply each classifier to test example,
 forming vector of predictions \mathbf{P}
 - Predict class whose vector is closest to \mathbf{P} (Hamming)
Model Ensembles: Summary

- Learn several models and combine them
- Bagging: Random resamples
- Boosting: Weighted resamples
- ECOC: Recode outputs
- Stacking: Multiple learners