Dijkstra’s Method

CIS 315
overview

• single source shortest path
• no negative edge weights

Start with node s at distance 0
• S=∅ will be the set of nodes whose distances are known
• all other nodes have distance ∞

repeatedly
• find node u ∈ V-S whose shortest path estimate is minimum
• add u to S
• relax all edges leaving u
remember relax

```
relax(u,v)
    if u.dist + W[u,v] < v.dist
        then
            v.dist = u.dist + W[u,v]
            v.prev = u
```
input: graph G, weight function W, start node s

initialize as with Bellman-Ford

set $S=\emptyset$

priority queue Q containing all of V

while Q not empty

\[
\begin{align*}
 u &= Q.\text{extractMin} \\
 S &= S \cup \{u\} \\
 \text{for each } v \in \text{adj}[u] \\
 &\quad \text{relax}(u,v) \quad -- \text{involves decreaseKey on } Q
\end{align*}
\]
time just like Prim’s

- depends on priority queue implementation
- set can be represented with a vector
- V inserts and extractMin’s
- E decreaseKey’s
- binary heap: \(O((V+E) \lg V) \)
- fibonacci heap: \(O(V \lg V + E) \)
example graph
greedy methods need greedy proof

- define $\delta(s,v)$ to be the length of the shortest path from s to v
- ... which may be different from $v.\text{dist}$, which is the shortest path found so far

loop invariant (from text, p 660):
 at the start of each iteration of the while loop, $v.\text{dist} = \delta(s,v)$ for all $v \in S$
better loop invariant
(can you see why?)

loop invariant: at the start of each iteration of
the while loop

(i) for all $v \in S$, $v.\text{dist} = \delta(s, v)$
(ii) for all $v \notin S$, $v.\text{dist}$ is the length of the
shortest path from s to v, all of whose
intermediate vertices are in S
If \(u \) is an intermediate vertex on the shortest path from \(s \) to \(v \), then that part of the path from \(s \) to \(u \) is the shortest path to \(u \).

In this context (no negative edge weights)
\[
\delta(s,u) < \delta(s,v)
\]
correctness using that invariant

• assume the invariant (parts (i) and (ii)) at the beginning of the loop
• let u be the chosen vertex with minimum $u.\text{dist}$
• we proceed by contradiction
• assume that $u.\text{dist}$ is not the shortest path, that is, $\delta(s,u) < u.\text{dist}$
• continuing, with $\delta(s,u) < u.\text{dist}$
• part (ii) of invariant says that $u.\text{dist}$ is the shortest path to u with intermediate vertices in S
• so the actual shortest path to u includes vertices not in S
• let y be the first vertex on that path not in S
• by the basic fact, that is the shortest path to y
• since intermediate vertices to y are in S, part (ii) of the loop invariant gives $\delta(s,y) = y.\text{dist}$
the situation

S (the set, in blue)

curved line is path
straight line is edge
y is first node outside set S

punch line:
y.dist = \delta(s,y) < \delta(s,u) < u.dist
concluding correctness

• since $y.\text{dist} = \delta(s,y) < \delta(s,u) < u.\text{dist}$, u would not have been the vertex chosen

• so by contradiction, if u was chosen then $\delta(s,u) = u.\text{dist}$

• to prove part (ii) we use part (i) and the correctness of the relax method (skipped here)