Lecture 1

• What Does Ethics Have to do with Computing?

(Some slides are from M. Quinn, Ethics for the Information Age, Pearson © 2013.)

Organization of Lecture

• Introduction to Course: Why ethics?

• Brief history: From Computing to the Information Age

• Information technology and ethics

1.1 Introduction to Course:

Why teach a Computer Ethics course?
Why teach a Computer Ethics course?

- Required course for all BS/BA CIS students at UO
- Required course for national accreditation for a CS degree
- Professional Responsibility
 - Legal and ethical standards for professionals
 - Code of Ethics for ACM and IEEE members
 - Compare to doctors, lawyers, civil engineers
 - Liability

BUT….. Why teach a Computer Ethics course?

- Technologies may solve problems, but also create new problems to solve
 - Almost impossible to predict social change from new technology
 - Example: Automobile
- Using technology can change human behavior
 - Physical changes (e.g., laptops)
 - Psychological changes (e.g., cell phones and multi-tasking)
 - Social changes (e.g., campaigning for US President)
 - Ethical & Legal issues (e.g., pornography and the internet)
- As computer professionals, we have a responsibility
 - To be aware of ethical and legal issues
 - To integrate these issues into our design decisions
 - To notify our employer about these issues

Example: Pornography

- Law
 - Legal in US to obtain pornography, except where the subjects are children
- Norms
 - Soft-core vs. Hard-core Porn
 - Adults vs. Children as consumers
- The Market
 - $10 billion in US
- Architecture vs Code
 - Brick & Mortar Stores vs. Internet
The Information Age creates many new ethical issues

- New Functionality: Era characterized by unprecedented access to information by governments and other organizations, business, and individuals
 - Catalysts
 - Low-cost computers
 - High-speed communication networks
 - Access by individuals
- New Functionality = Many Social and Ethical Changes
 - Old laws do not apply to computer information and communication
 - Norms and markets changing rapidly

How can we understand social and ethical issues?

- Study the past technological change for understanding social change
- Study how to think about social change and ethics
 - Learn how to think about ethical questions
 - Logical thinking based on argument & evidence
 - Create generalizations from specific examples
 - Learn how to talk & listen
 - See many sides of an issue
 - Paraphrase & respect opinions not shared

1.2 Brief history: From Computing to the Information Age
Summary

• Technological Changes in computing
 – From hardware changes: slow to fast, large to small scale chips, small to large scale storage
 – From software changes: programming to GUIs
 – From integrating computing with communications
 – From group use (government, business, organizations) to individual
• What social changes have these brought?

Punched Card Tabulation

• Punched cards (late 19th century)
 – One record per card
 – Cards could be sorted into groups, allowing computation of subtotals by categories
• Early adopters
 – U.S. Bureau of the Census
 – Railroads
 – Retail organizations
 – Heavy industries

Punched Card used for US Census 1890
Electric Tabulator at U.S. Census Bureau

Tabulators → Punched Card Data Processing Systems early 1900’s to late 1980’s

- Electro-Mechanical systems 1900’s to 1970’s
 - Receives input data as punched cards
 - Transformations of input done by programmed plug-boards
 - Sorting, Tabulating
 - Produced output as a punched card or print-out
- Punched cards used in computer based systems until late 1980’s
 - Stored input and output data, including programs

FORTRAN programming
The First Computers - late 1940’s

• Developed in response to WWII
 – Computing ballistics trajectories
 • Von Neumann
 • Atanasoff-Berry Computer: vacuum tubes
 – ENIAC: externally programmed with wires
 – EDVAC: program stored in memory
 – Cryptography
 • Turing
 • Decoding the German Enigma machine
First Commercial Computers – 1950’s

• Remington-Rand
 – Completed UNIVAC in 1951
 – Delivered to U.S. Bureau of the Census
 – Predicted winner of 1952 Pres. election
• IBM
 – Larger base of customers from punched card legacy
 – Far superior sales and marketing organization
 – Greater investment in research and development
 – Dominated mainframe market by mid-1960s

CBS News Coverage of 1952 Presidential Election Featured UNIVAC Computer

Programming Languages - late 1950’s

• Assembly language
 – Symbolic representations of machine instructions
 – Programs just as long as machine language programs
• FORTRAN
 – First higher-level language (shorter programs)
 – Designed for scientific applications
• COBOL
 – U.S. Department of Defense standard
 – Designed for business applications
IBM System/360 - 1970’s to 1980’s

• Before System/360
 – IBM dominated mainframe marked in 1960s
 – IBM computers were incompatible
 – Switch computers → rewrite programs

• System/360
 – Series of 19 computers with varying levels of power
 – All computers could run same programs
 – Upgrade without rewriting programs

Engineers Test IBM System/360 CPUs

Liberating us from the Punched Card: Time-Sharing Systems and BASIC – early 1970’s

• Time-Sharing Systems
 – Divide computer time among multiple users
 – Users connect to computer via terminals
 – Cost of ownership spread among more people
 – Gave many more people access to computers

• BASIC programming language
 – Developed at Dartmouth College
 – Simple, easy-to-learn, popular language for teaching programming
Hardware Technology Changes allow Personal Computers

- Vacuum tubes (early 1900’s – 1950’s)
- Semiconductors
- Transistors (1947 Bell Labs)
- Integrated Circuit (1958 Texas Instruments)
- Microprocessor chip (Intel 1971)
- Trend: faster, cheaper, more reliable, smaller and more energy-efficient

Personal Computer – late 1970’s to 1990’s

- Altair 8800 (late 1970’s)
 - Gates and Allen create BASIC interpreter
 - Interpreter pirated at Homebrew Computer Club meeting
- Personal computers become popular – 1980’s
 - Apple Computer: Apple II
 - Tandy Corporation: TRS 80
- Developments draw businesses to personal computers – late 1980’s
 - Computer spreadsheet program: VisiCalc
 - IBM launches IBM PC

Steve Wozniak and Steve Jobs with Apple I Personal Computer
Graphical User Interface

- Xerox PARC (Palo Alto Research Center)
 - Alan Kay sees Doug Engelbart demo in 1968
 - Alto personal computer (early 1970s)
 - Bit-mapped display, keyboard, and mouse
- Apple Computer
 - Steve Jobs visits Xerox PARC in 1979
 - Macintosh (1984)
 - Bit-mapped display, keyboard, and mouse
- Microsoft Windows (1990)
 - Released in May 1990
 - Quickly became dominant graphical user interface

Single-Computer Hypertext Systems

- Peter Brown at University of Kent
 - Released versions for Macintosh and IBM PC
- Apple Computer
 - HyperCard (1987)
 - Hypertext system based on "stacks" of "cards"
 - Links represented by buttons
 - Basis for best-selling games Myst and Riven

Early Remote Computing – 1960’s

- Stibitz and Williams build Complex Number Calculator at Bell Labs
- Bell Labs part of AT&T (phone company)
- Teletype chosen for input/output
- Allows operator to be distant from machine
- Long-distance demonstration between New Hampshire and New York City
- Initially circuit-switching, later dial-up modem
ARPANET – early 1970’s

- DoD creates ARPANET in early 1970s
- Licklider conceives of “Galactic Network” 1962
- Decentralized design to improve survivability
- Packet-switching replaces circuit switching

Circuit-switched v. Packet-switched Networks

Email

- Creation
 - Tomlinson at BBN writes software to send, receive email messages on ARPANET, 1971
 - Roberts creates email utility
- Current status
 - One of world’s most important communication technologies
 - Billions of messages sent in U.S. every day
Internet - 1983

- Kahn conceives of open architecture networking, 1972 while at ARPANET
- Cerf and Kahn design TCP/IP protocol
- Internet: network of networks communicating using TCP/IP
- Initially implemented in 1983

NSFNET – late 1980’s

- Created by National Science Foundation
- Built on concepts of ARPANET and Internet
- Provided access grants to universities
- Encouraged commercial subscribers for regional networks
- Banned commercial traffic on NSFNET Backbone
- Private companies developed long-distance Internet connections
- After private networks established, NSF shut down NSFNET Backbone

World Wide Web

- First browser built at CERN in Switzerland
 - Berners-Lee created Web protocols
 - Protocols based on TCP/IP → general
 - Hypertext + Graphical User Interface (HTML)
- Later browsers
 - Mosaic
 - Netscape Navigator
 - Netscape Mozilla
 - Microsoft Internet Explorer (most popular)
Search Engines

- Crawler-based engines (Google, AltaVista)
 - Programs called spiders follow hyperlinks and visit millions of Web pages
 - System automatically constructs Web page database
- Human-assisted engines (Open Directory)
 - Humans build Web page database
 - Web page summaries more accurate
 - Far fewer Web pages in database
- Hybrid systems (MSN Search)

Broadband - 2000’s

- Broadband
 - High-speed Internet connection
 - At least 10x faster than dial-up connection
 - Enhanced by fiber optic networks
- Typical broadband speeds
 - Japan (#1 in world): 63 megabits/second
 - South Korea (#2): 40 megabits/second
 - United States (#15): 2 megabits/second

Summary

- Technological Changes in computing
 - From hardware changes: slow to fast, large to small scale chips, small to large scale storage
 - From software changes: programming to GUIs
 - From integrating computing with communications
 - From group use (government, business, organizations) to individual
- What social changes have these brought?
We end up in 2013!

- Individual general purpose computer with an integrated communications system for phone and internet
- Portable (hand-sized), relatively inexpensive
- Touch-sensitive GUI, video input/output,
- Real-time data collection of location, picture, sound
- Storage of data in remote server for integrating multiple devices

Apple iPhone
Product of the Information Age

Traffic Information on the Web
1.3 Information Technology and Ethics

IT & Ethics Issues (1/3)

- **Privacy: Email**
 - Easy way to keep in touch
 - Spam has become a real problem
- **Freedom of Expression: Web**
 - Free access to huge amounts of information
 - Harmful consequences of some sites
- **Intellectual Property: CDs, MP3s**
 - Free or cheap copies readily available
 - May be unfair to musicians

IT & Ethics Issues (2/3)

- **Ownership of Information: Credit cards**
 - Convenience over cash and checks
 - Increases possibility of identity theft
 - Who owns information about transactions?
- **Security:**
 - Open architecture of Internet leads to theft
 - How do we protect our systems from hacking?
IT & Ethics Issues (3/3)

- **Software Reliability:**
 - Who is responsible if software harms someone?
- **Who controls the World Wide Web:**
 - A conduit for democratic ideas?
 - Another tool for totalitarian governments?

Summary

- Rate of technological change accelerating
- Wrong question: “What will the computer do to us?”
- Right question: “What will we make of the computer?”
 (quoting Seymour Papert)