Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:

- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- “Pseudo-denotational” semantics

Now:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus
Packet Filters

A very simple view of packet filters:

- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language

 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly

 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly

 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
 - (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things
What is equivalence?

Equivalence depends on what is observable!

▶ Partial I/O equivalence (if terminates, same ans)
 ▶ while 1 skip equivalent to everything
 ▶ not transitive

▶ Total I/O equivalence (same termination behavior, same ans)

▶ Total heap equivalence (same termination behavior, same heaps)
 ▶ All (almost all?) variables have the same value

▶ Equivalence plus complexity bounds
 ▶ Is $O(2^n)$ really equivalent to $O(n)$?
 ▶ Is “runs within 10ms of each other” important?

▶ Syntactic equivalence (perhaps with renaming)
 ▶ Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence
Program Example: Strength Reduction

Motivation: Strength reduction

▶ A common compiler optimization due to architecture issues

Theorem: \(H ; e * 2 \Downarrow c \) if and only if \(H ; e + e \Downarrow c \)

Proof sketch:

▶ Prove separately for each direction

▶ Invert the assumed derivation, use hypotheses plus a little math to derive what we need

▶ Hmm, doesn’t use induction. That’s because this theorem isn’t very useful...
Program Example: Nested Strength Reduction

Theorem: If \(e' \) has a subexpression of the form \(e \times 2 \), then \(H ; e' \downarrow c' \) if and only if \(H ; e'' \downarrow c' \) where \(e'' \) is \(e' \) with \(e \times 2 \) replaced with \(e + e \)

First some useful metanotation:

\[
C ::= [\cdot] | C + e | e + C | C \times e | e \times C
\]

\(C[e] \) is “\(C \) with \(e \) in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

\(H ; C[e \times 2] \downarrow c' \) if and only if \(H ; C[e + e] \downarrow c' \)

Proof sketch: By induction on structure (“syntax height”) of \(C \)

▶ The base case (\(C = [\cdot] \)) follows from our previous proof
▶ The rest is a long, tedious, (and instructive!) induction
Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with \(e \times 2 \) and \(e + e \) except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the “nested \(X \)” theorem for any appropriate \(X \):

If \((H; e_1 \downarrow c \text{ if and only if } H; e_2 \downarrow c) \),
then \((H; C[e_1] \downarrow c' \text{ if and only if } H; C[e_2] \downarrow c') \)

The proof is identical except the base case is “by assumption”
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if $H ; s_1; (s_2; s_3) \rightarrow^n H' ; \text{skip}$ then there exist H'' and n' such that $H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' ; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

(b) If for all n there exist H' and s' such that $H ; s_1; (s_2; s_3) \rightarrow^n H' ; s'$, then for all n there exist H'' and s'' such that $H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply large-step:

\[
\begin{align*}
\text{CONST} & & \text{VAR} \\
H; \ c \downarrow c & & H; \ x \downarrow H(x) \\
\hline
\end{align*}
\]

IMP w/o multiply small-step:

\[
\begin{align*}
\text{SVAR} & & \text{SADD} \\
H; \ x \rightarrow H(x) & & H; \ c_1 + c_2 \rightarrow c_1 + c_2 \\
\text{SLEFT} & & \text{SRIGHT} \\
H; \ e_1 \rightarrow e'_1 & & H; \ e_2 \rightarrow e'_2 \\
H; \ e_1 + e_2 \rightarrow e'_1 + e_2 & & H; \ e_1 + e_2 \rightarrow e_1 + e'_2 \\
\end{align*}
\]

Theorem: Semantics are equivalent: \(H ; e \downarrow c \) if and only if \(H ; e \rightarrow^* c \)

Proof: We prove the two directions separately...
Proof, part 1

First assume $H; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $H; e \Downarrow c$

- **CONST**: Derivation with CONST implies $e = c$, and we can derive $H; c \rightarrow^0 c$
- **VAR**: Derivation with VAR implies $e = x$ for some x where $H(x) = c$, so derive $H; e \rightarrow^1 c$ with SVAR
- **ADD**: ...
Part 1, continued

First assume $H; e \downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H; e \downarrow c$

- ...

- **ADD**: Derivation with **ADD** implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H; e_1 \downarrow c_1$, and $H; e_2 \downarrow c_2$ for some e_1, e_2, c_1, c_2.

 By induction (twice), $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$.

 So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

 By **SADD** $H; c_1 + c_2 \rightarrow c_1 + c_2$.

 So $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.
Proof, part 2

Now assume $\exists n. \ H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

Proof by induction on n:

- $n = 0$: e is c and CONST lets us derive $H; c \Downarrow c$
- $n > 0$: (Clever: break into first step and remaining ones)
 $\exists e'. \ H; e \rightarrow e'$ and $H; e' \rightarrow^{n-1} c$.
 By induction $H; e' \Downarrow c$.
 So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- SVAR: ...
- SADD: ...
- SLEFT: ...
- SRIGHT: ...
Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- **svar**: Derivation with svar implies e is some x and $e' = H(x) = c$, so derive, by var, $H; x \Downarrow H(x)$.
- **sadd**: Derivation with sadd implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by add and two const, $H; c_1 + c_2 \Downarrow c_1 + c_2$.
- **sleft**: Derivation with sleft implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1. Since $e' = e'_1 + e_2$ inverting assumption $H; e' \Downarrow c$ gives $H; e'_1 \Downarrow c_1, H; e_2 \Downarrow c_2$ and $c = c_1 + c_2$. Applying the induction hypothesis to $H; e_1 \rightarrow e'_1$ and $H; e'_1 \Downarrow c_1$ gives $H; e_1 \Downarrow c_1$. So use add, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ to derive $H; e_1 + e_2 \Downarrow c_1 + c_2$.
- **sright**: Analogous to sleft.
The cool part, redux

Step through the **sLEFT** case more visually:

By assumption, we must have derivations that look like this:

\[
\begin{align*}
H; e_1 &\rightarrow e'_1 \\
H; e_1 + e_2 &\rightarrow e'_1 + e_2 \\
H; e'_1 \downarrow c_1 &\rightarrow H; e_2 \downarrow c_2 \\
H; e'_1 + e_2 &\downarrow c_1 + c_2
\end{align*}
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H ; e_1 \downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\begin{align*}
H; e_1 \downarrow c_1 &\rightarrow H; e_2 \downarrow c_2 \\
H; e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]
A nice payoff

Theorem: The small-step semantics is deterministic: if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof

- Given $(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent
Conclusions

- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:

Replace \texttt{while} rule with

\[
\begin{align*}
H ; e \Downarrow c & \quad c \leq 0 \\
H ; \text{while } e \mathcal{S} & \rightarrow H ; \text{skip}
\end{align*}
\]

\[
\begin{align*}
H ; e \Downarrow c & \quad c > 0 \\
H ; \text{while } e \mathcal{S} & \rightarrow H ; s ; \text{while } e \mathcal{S}
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace \texttt{ASSIGN} and \texttt{VAR} rules with

\[
\begin{align*}
H ; x := e & \rightarrow H, x \mapsto e ; \text{skip} \\
H ; H(x) \Downarrow c & \rightarrow H ; x \Downarrow c
\end{align*}
\]

\textit{NOT} equivalent to our original language