Where we are
▶ Done: OCaml tutorial, "IMP" syntax, structural induction
▶ Now: Operational semantics for our little “IMP” language
▶ Most of what you need for Homework 1
▶ (But Problem 4 requires proofs over semantics)

Review
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s ::= & \text{skip} \mid x := e \mid s ; s \mid \text{if } e \text{ } s \text{ } s \\
 e ::= & c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

(c ∈ \{... , -2, -1, 0, 1, 2, ... \})
(x ∈ \{x_1, x_2, ..., y_1, y_2, ..., z_1, z_2, ..., \})

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Outline
▶ Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 ▶ Derivation trees as interpreters
 ▶ Or as proofs about expressions
 6. Metatheory: Proofs about the semantics
▶ Then semantics for statements
 ▶ ...

Informal idea
Given e, what c does e evaluate to?

\[
1 + 2 \quad x + 2
\]

It depends on the values of variables (of course)

Use a heap \(H\) for a total function from variables to constants
 ▶ Could use partial functions, but then \(\exists H\) and e for which
 there is no c

We’ll define a relation over triples of \(H\), e, and c
 ▶ Will turn out to be function if we view \(H\) and e as inputs and
 c as output
 ▶ With our metalanguage, easier to define a relation and then
 prove it is a function (if, in fact, it is)

Heaps

\[
H ::= \cdot \mid H, x \mapsto c
\]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

▶ Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements
 ▶ For expression evaluation, 'we are given an H'
The judgment

We will write: $H ; e \downarrow c$

to mean, "e evaluates to c under heap H"

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax $H ; e \downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: $\cdot, x \mapsto 3 ; x + y \downarrow 3$, which will turn out to be true

(this triple will be in the relation we define)

Or: $\cdot, x \mapsto 3 ; x + y \downarrow 6$, which will turn out to be false

(this triple will not be in the relation we define)

Boyana Norris

Inference rules

Constant

CONST

$H ; c \downarrow c$

Variable

$H ; x \downarrow H(x)$

Addition

$H ; e_1 \downarrow c_1 \quad H ; e_2 \downarrow c_2$

$H ; e_1 + e_2 \downarrow c_1 + c_2$

Multiplication

$H ; e_1 \downarrow c_1 \quad H ; e_2 \downarrow c_2$

$H ; e_1 * e_2 \downarrow c_1 * c_2$

Top: hypotheses

Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you “instantiate consistently”

- So rules “work” “for all” $H, c, e_1, e_2, e_3, \ldots$
- But “each” e_1 has to be the “same” expression

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

- $\cdot, y \mapsto 4 ; 3 + y \downarrow 7$
- $\cdot, y \mapsto 4 ; 5 \downarrow 5$
- $\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12$

Instantiates:

<table>
<thead>
<tr>
<th>$H ; e_1 \downarrow c_1$</th>
<th>$H ; e_2 \downarrow c_2$</th>
<th>$H ; e_1 + e_2 \downarrow c_1 + c_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cdot, y \mapsto 4$</td>
<td>$3 \downarrow 3$</td>
<td></td>
</tr>
<tr>
<td>$\cdot, y \mapsto 4$</td>
<td>$3 + y \downarrow 7$</td>
<td></td>
</tr>
<tr>
<td>$\cdot, y \mapsto 4$</td>
<td>$(3 + y) + 5 \downarrow 12$</td>
<td></td>
</tr>
</tbody>
</table>

By definition, $H ; e \downarrow c$ if there exists a derivation with $H ; e \downarrow c$ at the root

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) R_0
- Let R_i be R_{i-1} union all $H ; e \downarrow c$ such that we can instantiate some inference rule to have conclusion $H ; e \downarrow c$ and all hypotheses in R_{i-1}
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$
- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules
Some theorems

- Progress: For all H and e, there exists a c such that $H ; e \downarrow c$

- Determinacy: For all H and e, there is at most one c such that $H ; e \downarrow c$

We rigged it that way... what would division, undefined-variables, or gettimeofday() do?

Proofs are by induction on the the structure (i.e., height) of the expression e

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

- If it terminates

We could define $H ; s \downarrow H_2$

- Would be a partial function from H_1 and s to H_2

Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$$H_1 ; s_1 \rightarrow H_2 ; s_2$$

Statement semantics

$$H_1 : s_1 \rightarrow H_2 : s_2$$

** ASSIGN

$$H ; e \downarrow c$$

$H ; x := e \rightarrow H, x \mapsto c$; skip

** SEQ1

$$H ; \text{skip}; s \rightarrow H ; s$$

** SEQ2

$$H ; s_1 \rightarrow H' ; s'_1$$

$$H ; s_1 ; s_2 \rightarrow H' ; s'_1 ; s_2$$

** IF1

$$H ; e \downarrow c \quad c \geq 0$$

$$H ; \text{if } e \text{ s}_1 \text{ s}_2 \rightarrow H ; s_1$$

** IF2

$$H ; e \downarrow c \quad c < 0$$

$$H ; \text{if } e \text{ s}_1 \text{ s}_2 \rightarrow H ; s_2$$

Program semantics

Defined $H ; s \rightarrow H' ; s'$, but what does “$s$” mean/do?

Our machine iterates: $H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots$

with each step justified by a complete derivation using our single-step statement semantics

Let $H_1 ; s_1 \rightarrow^n H_2 ; s_2$ mean “becomes after n steps”

Let $H_1 ; s_1 \rightarrow^* H_2 ; s_2$ mean “becomes after 0 or more steps”

Pick a special “answer” variable ans

The program s produces c if: $\cdot ; s \rightarrow^* H ; \text{skip}$ and $H(\text{ans}) = c$

Does every s produce a c?

Example program execution

$$x := 3; (y := 1; \text{while } x \ (y := y \times x; x := x - 1))$$

Let’s write some of the state sequence. You can justify each step with a full derivation. Let $s = (y := y \times x; x := x - 1)$.

$$\cdot ; x := 3; y := 1; \text{while } x \ s$$

$$\quad \rightarrow \cdot, x \mapsto 3; \text{skip}; y := 1; \text{while } x \ s$$

$$\quad \rightarrow \cdot, x \mapsto 3; y := 1; \text{while } x \ s$$

$$\quad \rightarrow^2 \cdot, x \mapsto 3, y := 1; \text{while } x \ s$$

$$\quad \rightarrow \cdot, x \mapsto 3, y := 1; \text{if } x \ (s; \text{while } x \ s) \ \text{skip}$$

$$\quad \rightarrow \cdot, x \mapsto 3, y := 1; y := y \times x; x := x - 1; \text{while } x \ s$$
Continued...

\[\rightarrow^2, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ x := x - 1; \ \textbf{while} \ x \ \textbf{s} \]

\[\rightarrow^2, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \ \textbf{while} \ x \ \textbf{s} \]

\[\ldots, y \mapsto 3, x \mapsto 2; \ \textbf{if} \ x \ (s; \ \textbf{while} \ x \ s) \ \textbf{skip} \]

\[\ldots, y \mapsto 6, x \mapsto 0; \ \textbf{skip} \]

Where we are

- Defined \(H; e \downarrow c \) and \(H; s \rightarrow H'; s' \) and extended the latter to give \(s \) a meaning
 - The way we did expressions is "large-step operational semantics"
 - The way we did statements is "small-step operational semantics"
 - So now you have seen both definitions by interpretation: program means what an interpreter (written in a metalanguage) says it means
 - Interpreter represents a (very) abstract machine that runs code
 - Large-step does not distinguish errors and divergence
 - But we defined IMP to have no errors
 - And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by “running” it

Example: Our last program terminates with \(x \) holding 0

We can prove a program diverges, i.e., for all \(H \) and \(n \), \(\cdot ; s \rightarrow^n \ H; \ \textbf{skip} \) cannot be derived

Example: \textbf{while} 1 \textbf{skip}

By induction on \(n \), but requires a stronger induction hypothesis

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \(H \) and \(s \) have no negative constants and \(H; s \rightarrow^* H'; s' \), then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H; (s_1; s_2) \) terminates.