Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement \(s \), which is defined as follows"

\[
 s ::= \text{skip} | x := e | s; s | \text{if } e \ s \ s | \text{while } e \ s
\]

\[
 e ::= c | x | e + e | e * e
\]

\((c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})\)

\((x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})\)

> Blue is metanotation: \(::= \) for “can be a” and \(\vdash \) for “or”

> Metavariabes represent “anything in the syntax class”

> By abstract syntax, we mean that this defines a set of trees

 ▶ Node has some label for “which alternative”
 ▶ Children are more abstract syntax (subtrees) from the appropriate syntax class

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: \(\text{if } x \text{ skip } y := 42 \ ; x := y \) versus \(\text{if } x \text{ skip } y := 42 \ ; x := y \)

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

▶ Trees are our “truth” with strings as a “convenient notation”

\[
\text{if } x \text{ skip } (y := 42 \ ; x := y) \text{ versus } (\text{if } x \text{ skip } y := 42) \ ; x := y
\]
Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider $e = 1 + (2 + 3)$. Showing $e \in E_3$ suffices because $E_3 \subseteq E$. Showing $2 + 3 \in E_2$ and $1 \in E_2$ suffices...

PL-style proof: Consider $e = 1 + (2 + 3)$ and definition of E.

Theorem 2: All expressions have at least one constant or variable.

Inductive definition

$$s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s$$

$$e ::= c \mid x \mid e + e \mid e \ast e$$

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction

» Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

» Let $E_0 = \emptyset$

» For $i > 0$, let E_i be E_{i-1} union “expressions of the form c, x, $e_1 + e_2$, or $e_1 * e_2$ where $e_1, e_2 \in E_{i-1}$”

» Let $E = \bigcup_{i \geq 0} E_i$

The set E is what we mean by our compact metanotation

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, for all $e \in E_i$, e has at least one constant or variable.

» Base: $i = 0$ implies $E_i = \emptyset$

» Inductive: $i > 0$. Consider arbitrary $e \in E_i$ by cases:

« $e \in E_{i-1}$...

« $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1}$...

« $e = e_1 * e_2$ where $e_1, e_2 \in E_{i-1}$...

Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

» Always trivial if you require enough parentheses or keywords

» Extreme case: LISP, 1960s; Scheme, 1970s

» Extreme case: XML, 1990s

» Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

» Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) \(e \). Cases:

- \(c \) . . .
- \(x \) . . .
- \(e_1 + e_2 \) . . .
- \(e_1 \times e_2 \) . . .

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL.