Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a **principled methodology** thanks to a proper education

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Let bindings (CBV)

<table>
<thead>
<tr>
<th>e ::= ...</th>
<th>let x = e₁ in e₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁ → e'₁</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>let x = e₁ in e₂ = let x = e'₁ in e₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ ⊢ e₁ : τ'</td>
</tr>
<tr>
<td>Γ, x : τ' ⊢ e₂ : τ</td>
</tr>
<tr>
<td>Γ ⊢ let x = e₁ in e₂ : τ</td>
</tr>
</tbody>
</table>

(Also need to extend definition of substitution...)

Progress: If e is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Derived forms

<table>
<thead>
<tr>
<th>let x = e₁ in e₂ = (λx. e₂) e₁</th>
</tr>
</thead>
</table>

These 3 semantics are **different** in the state-sequence sense (e₁ → e₂ → ... → eₙ)

- But (totally) **equivalent** and you could prove it (not hard)

Note: ML type-checks let and λ differently (later topic)

Note: Don’t desugar early if it hurts error messages!

Booleans and Conditionals

<table>
<thead>
<tr>
<th>e ::= ...</th>
<th>true</th>
<th>false</th>
<th>if e₁ e₂ e₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>v ::= ...</td>
<td>true</td>
<td>false</td>
<td>-------------</td>
</tr>
<tr>
<td>τ ::= ...</td>
<td>bool</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| e₁ → e'₁ |

<table>
<thead>
<tr>
<th>if true e₂ e₃ → e₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>if false e₂ e₃ → e₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ ⊢ e₁ : bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ ⊢ e₂ : τ</td>
</tr>
<tr>
<td>Γ ⊢ e₃ : τ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ ⊢ true : bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ ⊢ false : bool</td>
</tr>
</tbody>
</table>

Also extend definition of substitution (will stop writing that)... Notes: CBN, new Canonical Forms case, all lemma cases easy
Sums

What about ML-style datatypes:

```
type t = A | B of int | C of int * t
```

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., `type 'a mylist = ...`)
4. Named types

For now, just model (1) with (anonymous) sum types

▶ (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally

Pairs (CBV, left-right)

```
e ::= ... | (e, e) | e.1 | e.2
v ::= ... | (v, v)
τ ::= ... | τ * τ
e1 → e'
1
(e1, e2) ... only 3 rules
▶ Will learn more concise notation later (evaluation contexts)
```

Pairs continued

```
Γ ⊢ e1 : τ1  Γ ⊢ e2 : τ2
Γ ⊢ (e1, e2) : τ1 ∗ τ2

Γ ⊢ e : τ1 ∗ τ2
Γ ⊢ e : τ1 : τ2

Canonical Forms: If ⊢ v : τ1 ∗ τ2, then v has the form (v1, v2)
```

Progress: New cases using Canonical Forms are v.1 and v.2

Preservation: For primitive reductions, inversion gives the result directly

Small-step can be a pain

▶ Large-step needs only 3 rules

Records

Records are like n-ary tuples except with named fields

▶ Field names are not variables; they do not α-convert

```
e ::= ... | {l1 = e1; ...; ln = en} | e.l
v ::= ... | {l1 = v1; ...; ln = vn} | v.l
τ ::= ... | {l1 : τ1; ...; ln : τn}
```

```
e1 → e'
e1.l → e'.l
Γ ⊢ e1 : τ1 ... Γ ⊢ en : τn  labels distinct
Γ ⊢ {l1 = e1; ...; ln = en} : {l1 : τ1; ...; ln : τn}
Γ ⊢ e : {l1 : τ1; ...; ln : τn}  1 ≤ i ≤ n
Γ ⊢ e.l : τl
```

Records continued

Should we be allowed to reorder fields?

▶ l ⊢ {l1 = 42; l2 = true} : {l2 : bool; l1 : int} ??

▶ Really a question about, "when are two types equal?"

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

▶ Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums syntax and overview

```
e ::= ... | A(e) | B(e) | match e with Ax. e | Bx. e
v ::= ... | A(v) | B(v)
τ ::= ... | τ1 + τ2
```

▶ Only two constructors: A and B

▶ All values of any sum type built from these constructors

▶ So A(e) can have any sum type allowed by e’s type

▶ No need to declare sum types in advance

▶ Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\begin{align*}
\text{match } A(v) \text{ with } Ax. e_1 | By. e_2 \to e_1[v/x] \\
\text{match } B(v) \text{ with } Ax. e_1 | By. e_2 \to e_2[v/y] \\
\end{align*}
\]

\[
e \to e' \\
A(e) \to A(e') \\
B(e) \to B(e') \\
\]

\[
\text{match } e \text{ with } Ax. e_1 | By. e_2 \to e' \text{ with } Ax. e_1 | By. e_2
\]

(Definition of substitution must avoid capture, just like functions)

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
 - A tag \(A \) or \(B \) (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\begin{align*}
\Gamma \vdash e : \tau_1 & \quad \Gamma \vdash e : \tau_2 \\
\Gamma \vdash A(e) : \tau_1 + \tau_2 & \quad \Gamma \vdash B(e) : \tau_1 + \tau_2 \\
\Gamma \vdash e : \tau_1 + \tau_2 & \quad \Gamma, x: \tau_1 \vdash e_1 : \tau \quad \Gamma, y: \tau_2 \vdash e_2 : \tau \\
\Gamma \vdash \text{match } e \text{ with } Ax. e_1 | By. e_2 : \tau
\end{align*}
\]

Key ideas:
- For constructor-uses, “other side can be anything”
- For \text{match}, both sides need same type
 - Don’t know which branch will be taken, just like an if.
 - In fact, can drop explicit bools and encode with sums: E.g., \text{bool} = \text{int + int}, \text{true} = A(0), false = B(0)

Sums Type Safety

Canonical Forms: If \(\cdot \vdash v : \tau_1 + \tau_2 \), then there exists a \(v_1 \) such that either \(v = A(v_1) \) and \(\cdot \vdash v_1 : \tau_1 \) or \(v = B(v_1) \) and \(\cdot \vdash v_1 : \tau_2 \)

- Progress for \text{match } v \text{ with } Ax. e_1 | By. e_2 follows, as usual, from Canonical Forms
- Preservation for \text{match } v \text{ with } Ax. e_1 | By. e_2 follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new “hard” cases because we have new binding occurrences
- But that’s all there is to it (plus lots of induction)

Sums in C

\[
type t = A \text{ of } t_1 | B \text{ of } t_2 | C \text{ of } t_3
\]

match e with A x -> ...

One way in C:

\[
\begin{align*}
\text{struct } t \{ \\
\text{enum } \{ A, B, C \} \text{ tag; } \\
\text{union } \{ t_1 a; t_2 b; t_3 c; \} \text{ data; } \\
\}; \\
\end{align*}
\]

\[
\begin{align*}
\ldots \text{ switch}(e->tag){ \text{ case } A: t_1 x=e->data.a; \ldots}
\end{align*}
\]

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
- Mutation costs us again!
Sums in Java

```
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in Java (t4 is the match-expression’s type):

```
abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...
```

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Base Types and Primitives, in general

What about floats, strings, ...?

Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types \((b_1, \ldots, b_n)\) and primitives \((p_1 : \tau_1, \ldots, p_n : \tau_n)\). Examples:

- `concat : string → string → string`
- `toInt : float → int`
- “hello” : string

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate \(p_i v_1 \ldots v_n\) where \(p_i\) is a primitive

We can prove soundness once and for all given the assumptions

Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power

- So instead add an explicit construct for recursion
- You might be thinking `let rec f x = e, but we will do something more concise and general but less intuitive`

\[
\begin{aligned}
& e ::= \ldots \mid \text{fix } e \\
& e \rightarrow e' \\
& \text{fix } e \rightarrow \text{fix } e' \\
& \text{fix } \lambda x. e \rightarrow e[\text{fix } \lambda x. e/x]
\end{aligned}
\]

No new values and no new types

Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace \(\text{int} + (\text{int} → \text{int})\) with \(\text{int} * (\text{int} * (\text{int} → \text{int}))\)

Pairs and sums are “logical duals” (more on that later)

- To make a \(\tau_1 + \tau_2\) you need a \(\tau_1 \text{ and } \tau_2\)
- To make a \(\tau_1 + \tau_2\) you need a \(\tau_1 \text{ or } \tau_2\)
- Given a \(\tau_1 \text{ or } \tau_2\), you can get a \(\tau_1 \text{ or } \tau_2\) (or both; your “choice”)
- Given a \(\tau_1 + \tau_2\), you must be prepared for either a \(\tau_1\) or \(\tau_2\) (the value’s “choice”)

Using fix

To use `fix` like `let rec`, just pass it a two-argument function where the first argument is for recursion

- Not shown: `fix` and tuples can also encode mutual recursion

Example:

\[
\begin{aligned}
& (\text{fix } \lambda f. \lambda n. \text{if } (n < 1) 1 (n * (f(n-1)))) \ 5 \\
& \rightarrow (\lambda n. \text{if } (n < 1) 1 (n * (f(n-1))))(5-1)) 5 \\
& \rightarrow (5 * (\text{fix } \lambda f. \lambda n. \text{if } (n < 1) 1 (n * (f(n-1))))(5-1)) \\
& \rightarrow 2^2 \\
& 5 * (\text{fix } \lambda f. \lambda n. \text{if } (n < 1) 1 (n * (f(n-1))))(5-1)) \\
& \rightarrow 2^2 \\
& 5 * (\text{fix } \lambda f. \lambda n. \text{if } (n < 1) 1 (n * (f(n-1))))(5-1)) 4 \\
& \rightarrow ...
\end{aligned}
\]

Why called fix?

In math, a fix-point of a function \(g\) is an \(x\) such that \(g(x) = x\)

- This makes sense only if \(g\) has type \(\tau \rightarrow \tau\) for some \(\tau\)
- A particular \(g\) could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type \((\text{int} \rightarrow \text{int})\):
 - \(\lambda x. x + 1\) has no fix-points
 - \(\lambda x. x \times 0\) has one fix-point
 - \(\lambda x. \text{abs}(x)\) has an infinite number of fix-points
 - \(\lambda x. \text{if } (x < 10 \&\& x > 0) x 0\) has 10 fix-points

Boyana Norris
CIS 624 2013, Lecture 11
20
General approach

Typing fix

\[\Gamma \vdash e : \tau \rightarrow \tau \]
\[\Gamma \vdash \text{fix } e : \tau \]

Math explanation: If \(e \) is a function from \(\tau \) to \(\tau \), then fix \(e \), the fixed-point of \(e \), is some \(\tau \) with the fixed-point property

Operational explanation: \(\text{fix } \lambda x. \ e' \) becomes \(e'[\text{fix } \lambda x. \ e'/x] \)

- The substitution means \(x \) and \(\text{fix } \lambda x. \ e' \) need the same type
- The result means \(e' \) and \(\text{fix } \lambda x. \ e' \) need the same type

Note: The \(\tau \) in the typing rule is usually instantiated with a function type

- e.g., \(\tau_1 \rightarrow \tau_2 \), so \(e \) has type \((\tau_1 \rightarrow \tau_2) \rightarrow (\tau_1 \rightarrow \tau_2) \)

Note: Proving soundness is straightforward!

Anonymity

We added many forms of types, all unnamed a.k.a. structural.

Many real PLs have (all or mostly) named types:

- Java, C, C++: all record types (or similar) have names
- Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Termination

Surprising fact: If \(\cdot \vdash e : \tau \) in STLC with all our additions except fix, then there exists a \(v \) such that \(e \rightarrow^* v \)

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

Non-proof:

- Recursion in \(\lambda \) calculus requires some sort of self-application
- Easy fact: For all \(\Gamma, x, \) and \(\tau \), we cannot derive \(\Gamma \vdash x : \tau \)