Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
\begin{align*}
e & ::= c \mid \lambda x. \ e \mid x \mid e \ e \\
v & ::= c \mid \lambda x. \ e \\
\tau & ::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma & ::= \cdot \mid \Gamma, x : \tau
\end{align*}
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
\begin{array}{c}
e \to e' \\
E-\text{APPLY} \quad E-\text{APP1} \quad E-\text{APP2}
\end{array}
\]

\[
\begin{align*}
\frac{}{(\lambda x. \ e) \ v \to e[v/x]} & \quad \frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \\
\frac{}{v \ e_2 \to v \ e_2'}
\end{align*}
\]

Typing Rules (a.k.a. Static Semantics)

\[
\begin{array}{c}
\Gamma \vdash e : \tau \\
T-\text{CONST} \quad T-\text{VAR} \quad T-\text{FUN} \quad T-\text{APP}
\end{array}
\]

\[
\begin{align*}
\frac{}{\Gamma \vdash c : \text{int}} & \quad \frac{}{\Gamma \vdash x : \Gamma(x)} \\
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \quad x \not\in \text{Dom}(\Gamma)}{\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2} \\
\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \ e_2 : \tau_1}
\end{align*}
\]

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau \) and \(e \to^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \to e'' \).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \to \tau_2$, then v is a lambda, i.e., $\lambda x. e$ for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-Const.

ii If τ is $\tau_1 \to \tau_2$, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \to e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-Var Impossible, as Γ is \cdot.

T-Fun e is $\lambda x. e'$, which is a value, so we are done.

T-App e is $e_1 \ e_2$.

By inversion, $\cdot \vdash e_1 : \tau' \to \tau$ and $\cdot \vdash e_2 : \tau'$ for some τ'.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau' \to \tau$ and the induction hypothesis ensures $e_1 \to e'_1$ for some e'_1. Therefore, by E-App1, $e_1 \ e_2 \to e'_1 \ e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau'$ and our induction hypothesis ensures $e_2 \to e'_2$ for some e'_2. Therefore, by E-App2, $e_1 \ e_2 \to e_1 \ e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau' \to \tau$ and the Canonical Forms Lemma ensures e_1 is some $\lambda x. e'$. And $(\lambda x. e') \ e_2 \to e'[e_2/x]$ by E-Apply, so $e_1 \ e_2$ can take a step.

\[2\]
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is \cdot, but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If $\Gamma, x:\tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x:\tau' \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x:\tau_1, y:\tau_2 \vdash e : \tau$ and $y \neq x$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x:\tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-Const e is c, so $e[e'/x]$ is c. By T-Const, $\Gamma \vdash c : \text{int}$.

T-Var e is y and $\Gamma, x:\tau' \vdash y : \tau$.

- If $y \neq x$, then $y[e'/x]$ is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by T-Var, $\Gamma \vdash y : \tau$.
- If $y = x$, then $y[e'/x]$ is e'. $\Gamma, x:\tau' \vdash x : \tau$, so by inversion, $(\Gamma, x:\tau')(x) = \tau$, so $\tau = \tau'$. We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-App e is $e_1 e_2$, so $e[e'/x]$ is $(e_1[e'/x])(e_2[e'/x])$.

- We know $\Gamma, x:\tau' \vdash e_1 e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\Gamma, x:\tau' \vdash e_2 : \tau_2$ for some τ_2.
- Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.
- Given these, T-App lets us derive $\Gamma \vdash (e_1[e'/x]) (e_2[e'/x]) : \tau_1$.
- So by the definition of substitution $\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1$.

T-Fun e is $\lambda y. e_b$, so $e[e'/x]$ is $\lambda y. (e_b[e'/x])$.

- We can α-convert $\lambda y. e_b$ to ensure $y \notin \text{Dom}(\Gamma)$ and $y \neq x$.
- We know $\Gamma, x:\tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x:\tau', y:\tau_1 \vdash e_b : \tau_2$.
- By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash e_b : \tau_2$.
- By Weakening, we know that $\Gamma, y:\tau_1 \vdash e' : \tau'$.
- We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash e_b[e'/x] : \tau_2$.
- Given this, T-Fun lets us derive $\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2$.
- So by the definition of substitution, $\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2$.
Theorem (Preservation). If ⊢ e : τ and e → e′, then ⊢ e′ : τ.

Preservation. The proof is by induction on the derivation of ⊢ e : τ. There are four cases.

T-Const e is c. This case is impossible, as there is no e′ such that c → e′.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is λx. e b. This case is impossible, as there is no e′ such that λx. e b → e′.

T-App e is e 1 e 2, so ⊢ e 1 e 2 : τ.

By inversion on the typing rule, ⊢ e 1 : τ 2 → τ and ⊢ e 2 : τ 2 for some τ 2.

There are three possible rules for deriving e 1 e 2 → e′.

E-App1 Then e′ = e′ 1 e 2 and e 1 → e′ 1.

By ⊢ e 1 : τ 2 → τ, e 1 → e′ 1, and induction, ⊢ e′ 1 : τ 2 → τ.

Using this and ⊢ e 2 : τ 2, T-App lets us derive ⊢ e′ 1 e 2 : τ.

E-App2 Then e′ = e 1 e′ 2 and e 2 → e′ 2.

By ⊢ e 2 : τ 2, e 2 → e′ 2, and induction ⊢ e′ 2 : τ 2.

Using this and ⊢ e 1 : τ 2 → τ, T-App lets us derive ⊢ e 1 e′ 2 : τ.

E-Apply Then e 1 is λx. e b for some x and e b, and e′ = e b[e 2/x].

By inversion of the typing of ⊢ e 1 : τ 2 → τ, we have ⊢ x : τ 2 ⊢ e b : τ.

This and ⊢ e 2 : τ 2 lets us use the Substitution Lemma to conclude ⊢ e b[e 2/x] : τ.