Types and Type Inference

John Mitchell
previously revised by K Fisher

Reading: “Concepts in Programming Languages”, Revised Chapter 6 - handout on Web!!

Outline

• General discussion of types
 — What is a type?
 — Compile-time versus run-time checking
 — Conservative program analysis
• Type inference
 — Discuss algorithm and examples
 — Illustrative example of static analysis algorithm
• Polymorphism
 — Uniform versus non-uniform implementations

Language Goals and Trade-offs

• Thoughts to keep in mind
 — What features are convenient for programmer?
 — What other features do they prevent?
 — What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 — What are the implementation costs?

What is a type?

• A type is a collection of computable values that share some structural property.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Non-examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer String</td>
<td>{3, True, (x\to x)}</td>
</tr>
<tr>
<td>Int \to Bool</td>
<td>Even integers</td>
</tr>
<tr>
<td>(Int \to Int) \to Bool</td>
<td>(f: \text{Int} \to \text{Int} \mid x\to 3 \Rightarrow f(x) > x*(x+1))</td>
</tr>
</tbody>
</table>

Distinction between sets of values that are types and sets that are not types is language dependent.

Advantages of Types

• Program organization and documentation
 — Separate types for separate concepts
 • Represent concepts from problem domain
 — Document intended use of declared identifiers
 • Types can be checked, unlike program comments
• Identify and prevent errors
 — Compile-time or run-time checking can prevent meaningless computations such as 3 + true — “Bill”
• Support optimization
 — Example: short integers require fewer bits
 — Access components of structures by known offset
What is a type error?
- Whatever the compiler/interpreter says it is?
- Something to do with bad bit sequences?
 - Floating point representation has specific form
 - An integer may not be a valid float
- Something about programmer intent and use?
 - A type error occurs when a value is used in a way
 that is inconsistent with its definition
 - Example: declare as character, use as integer

Type errors are language dependent
- Array out of bounds access
 - C/C++: runtime errors.
 - Haskell/Java: dynamic type errors.
- Null pointer dereference
 - C/C++: run-time errors
 - Haskell/ML: pointers are hidden inside datatypes
 - Null pointer dereferences would be incorrect use of
 these datatypes, therefore static type errors

Compile-time vs Run-time Checking
- JavaScript and Lisp use run-time type checking
 - f(x) Make sure f is a function before calling f
 - TypeError: f is not a function
- Haskell and Java use compile-time type checking
 - f(x) Must have f : A → B and x : A
- Basic tradeoff
 - Both kinds of checking prevent type errors
 - Run-time checking slows down execution
 - Compile-time checking restricts program flexibility
 - JavaScript array: elements can have different types
 - Haskell list: all elements must have same type
 - Which gives better programmer diagnostics?

Expressiveness
- In JavaScript, we can write a function like
  ```javascript
  function f(x) { return x < 10 ? x : x(); }
  ```
 Some uses will produce type error, some will not.
- Static typing always conservative
  ```javascript
  if (complicated-boolean-expression) {
    f(5);
  } else f(15);
  ```

Relative Type-Safety of Languages
- Not safe: BCPL family, including C and C++
 - Casts, pointer arithmetic
- Almost safe: Algol family, Pascal, Ada.
 - Dangling pointers.
 - Allocate a pointer p to an integer, deallocate the memory
 referenced by p, then later use the value pointed to by p.
 - No language with explicit deallocation of memory is fully
 type-safe.
- Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 - Dynamically typed: Lisp, Smalltalk, JavaScript
 - Statically typed: ML, Haskell, Java

Type Checking vs Type Inference
- Standard type checking:
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 - Examine body of each function
 - Use declared types to check agreement
- Type inference:
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 - Examine code without type information. Infer the
 most general types that could have been declared.

ML and Haskell are designed to make type inference feasible.
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 – Eliminated sources of unsoundness.
 – Become substantially more expressive.
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types.
 – Guaranteed to produce most general type.
 – Widely regarded as important language innovation.
 – Illustrative example of a flow-insensitive static analysis algorithm.

History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
 – Hindley extended the algorithm to a richer language and proved it always produced the most general type
 – Milner independently developed equivalent algorithm, called algorithm W, during his work designing ML
 – In 1982, Damas proved the algorithm was complete.

• Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic.Net 9.0. Have been plans for Fortress, Perl 6, C++0x...

uHaskell

• Subset of Haskell to explain type inference.
 – Haskell and ML both have overloading
 – Will not cover type inference with overloading

Type Inference: Basic Idea

Example

\[
\text{\texttt{f x = 2 + x}}
\]

> \texttt{f :: Int -> Int}

What is the type of \(f \)?

\(+ \) has type: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}

\(2 \) has type: \text{Int}

Since we are applying \(+ \) to \(x \) we need \(x :: \text{Int} \)

Therefore \(f \ x = 2 + x \) has type \(\text{Int} \rightarrow \text{Int} \)

Step 1: Parse Program

• Parse program text to construct parse tree.

\[
f \ x = 2 + x
\]

Infix operators are converted to Curied function application during parsing:

\[
2 + x \rightarrow (+) 2 x
\]

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence.
Step 3: Add Constraints

\[f \; x \; = \; 2 + x \]

Constraints from Application Nodes

- Function application (apply \(f \) to \(x \))
 - Type of \(f \) (\(t_0 \) in figure) must be domain \(\rightarrow \) range.
 - Domain of \(f \) must be type of argument \(x \) (\(t_1 \) in fig)
 - Range of \(f \) must be result of application (\(t_2 \) in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2 \)

Step 4: Solve Constraints

Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: constants (2), built-in operators (+), known functions (tail).
 - From form of parse tree: e.g., application and abstraction nodes.
- Solve constraints using unification
- Determine types of top-level declarations

Constraints from Abstractions

- Function declaration:
 - Type of \(f \) (\(t_0 \) in figure) must domain \(\rightarrow \) range
 - Domain is type of abstracted variable \(x \) (\(t_1 \) in fig)
 - Range is type of function body \(e \) (\(t_2 \) in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2 \)
Inferring Polymorphic Types

- Example:
 \[f \circ g = g \circ 2 \]
 \[\triangleright f :: (\text{Int} \to t_4) \to t_4 \]

- Step 1:
 Build Parse Tree

- Step 3:
 Generate constraints

- Step 4:
 Solve constraints

- Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types.

Using Polymorphic Functions

- Function:
 \[f \circ g = g \circ 2 \]
 \[\triangleright f :: (\text{Int} \to t_4) \to t_4 \]

- Possible applications:

 - add \[x = 2 + x \]
 \[\triangleright \text{add} :: \text{Int} \to \text{Int} \]
 - isEven \[x = \text{mod} (x, 2) == 0 \]
 \[\triangleright \text{isEven} :: \text{Int} \to \text{Bool} \]
 - if \[f \circ \text{add} \]
 \[\triangleright 4 :: \text{Int} \]
 - Unconstrained type variables become polymorphic types.

Example:

\[f \circ g = g \circ 2 \]
\[\triangleright f :: (\text{Int} \to t_4) \to t_4 \]
Recognizing Type Errors

- Function:
 \[f \circ g = g \circ f \]
 \[f : (\text{Int} \rightarrow t_4) \rightarrow t_4 \]

- Incorrect use

\[
\text{not } x = \text{if } x \text{ then } \text{True} \text{ else } \text{False} \\
> \text{not :: Bool } \rightarrow \text{Bool} \\
f \text{not} \\
> \text{Error: operator and operand don’t agree} \\
\text{operator domain: Int } \rightarrow a \\
\text{operand: Bool } \rightarrow \text{Bool}
\]

- Type error:
 cannot unify \(\text{Bool } \rightarrow \text{Bool} \) and \(\text{Int } \rightarrow \text{t} \)

Another Example

- Example:
 \[f (g,x) = g \circ (g \ x) \]
 \[f : (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \]

 - Step 1: Build Parse Tree

 - Step 2: Assign type variables

 - Step 3: Generate constraints

 - Step 4: Solve constraints

 - Step 5: Determine type of \(f \)
Polymorphic Datatypes

• Functions may have multiple clauses
 - Example:
 - length [] = 0
 - length (x:rest) = 1 + (length rest)

• Type inference
 - Infer separate type for each clause
 - Combine by adding constraint that all clauses must have the same type
 - Recursive calls: function has same type as its definition

Type Inference with Datatypes

• Example: length (x:rest) = 1 + (length rest)

Step 1: Build Parse Tree

Step 2: Assign type variables

Step 3: Generate constraints

Multiple Clauses

• Function with multiple clauses
 - Example:
 - append ([]) = z
 - append (x:xs, z) = x : append (xs, z)

• Infer type of each clause
 - First clause:
 - append :: ([], z) -> t_2
 - Second clause:
 - append :: ([], t_4) -> ([], t_3)

• Combine by equating types of two clauses
 - append :: ([], t_3) -> t_2
Most General Type

• Type inference produces the most general type

```
map (f, []) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

• Functions may have many less general types

```
> map :: (t_1 -> Int, [t_1])  -> [Int]
> map :: (Bool -> t_2, [Bool]) -> [t_2]
> map :: (Char -> Int, [Char]) -> [Int]
```

• Less general types are all instances of most general type, also called the principal type

Information from Type Inference

• Consider this function...

```
reverse [] = []
reverse (x:xs) = reverse xs
```

... and its most general type:

```
> reverse :: [t_1] -> [t_2]
```

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!

Haskell Type Inference

• Haskell uses type classes
 – supports user-defined overloading, so the inference algorithm is more complicated.

• ML restricts the language
 – to ensure that no annotations are required

• Haskell provides additional features
 – like polymorphic recursion for which types cannot be inferred and so the user must provide annotations

Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown

• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete

• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations

Type Inference: Key Points

• Type inference computes the types of expressions
 – Does not require type declarations for variables
 – Finds the most general type by solving constraints
 – Leads to polymorphism

• Sometimes better error detection than type checking
 – Type may indicate a programming error even if no type error.

• Some costs
 – More difficult to identify program line that causes error.
 – Natural implementation requires uniform representation sizes.
 – Complications regarding assignment took years to work out.

• Idea can be applied to other program properties
 – Discover properties of program using same kind of analysis

Parametric Polymorphism: Haskell vs C++

• Haskell polymorphic function
 – Declarations (generally) require no type information
 – Type inference uses type variables to type expressions
 – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
 – Programmer must declare the argument and result types of functions.
 – Programmers must use explicit type parameters to express polymorphism
 – Function application: type checker does instantiation
Example: Swap Two Values

- Haskell
  ```haskell
  swap :: (IORef a, IORef a) -> IO ()
  swap (x,y) = do {
    val_x <- readIORef x; val_y <- readIORef y;
    writeIORef y val_x;   writeIORef x val_y;
    return () }
  ```

- C++
  ```cpp
  template <typename T>
  void swap(T& x, T& y){
    T tmp = x;  x=y;  y=tmp;
  }
  ```

Declarations both swap two values polymorphically, but they are compiled very differently.

Another Example

- C++ polymorphic sort function
  ```cpp
  template <typename T>
  void sort(int count, T * A[count]) {
    for (int i=0; i<count-1; i++)
      for (int j=count-1; j>=i; j--)
  }
  ```

- What parts of code depend on the type?
 - Indexing into array
 - Meaning and implementation of operator <

Polymorphism vs Overloading

- Parametric polymorphism
 - Single algorithm may be given many types
 - Type variable may be replaced by any type
 - If f::t→t then f::Int→Int, f::Bool→Bool, ...

- Overloading
 - A single symbol may refer to more than one algorithm
 - Each algorithm may have different type
 - Choice of algorithm determined by type context
 - Types of symbol may be arbitrarily different
 - In ML, + has types int*int→int, real*real→real, no others

Summary

- Types are important in modern languages
 - Program organization and documentation
 - Prevent program errors
 - Provide important information to compiler

- Type inference
 - Determine best type for an expression, based on known information about symbols in the expression

- Polymorphism
 - Single algorithm (function) can have many types