Fields, Meshes, and Interpolation (Part 1)
Project #1

• Goal: write a specific image
• Due: “Friday October 4th” → “6am Saturday October 5th”
• % of grade: 2%
• Q: Why do I only get 2 days to complete this project?
• A: We need to need to get multi-platform issues shaken out ASAP.
• Experience last year was pretty good.
Motivation for today’s lecture

• Last class: how visualization works
 – Many visual metaphors for representing data
 • How to choose the right tool from the toolbox?
 – This course:
 • Describe the tools
 • Describe the systems that support the tools

• This class: we need to understand the data we will be working with before we can talk about the tools
 – It will go by fast, but you will have the notes and a HW to reinforce it.
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Elements of a Visualization

Legend

Display of Data

Reference Cues

Provenance Information
Elements of a Visualization

What is the value at this location? How do you know?

What data went into making this picture?
Where does temperature data come from?

- Iowa circa 1980s: people phoned in updates

6:00pm: Grandma calls in 80F.

6:00pm: Grandma's friend calls in 82F.

What is the temperature along the white line?
What is the temperature at points between Ralston and Glidden?

Temperature

82°F
81°F
80°F

Distance

D=0, Ralston, IA
D=10 miles, Glidden, IA
Ways Visualization Can Lie

Data Errors:
- Data collection is inaccurate
- Data collected too sparsely

Visualization Errors:
- Illusion of certainty
- Poor choices of parameters
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Fields & Spaces

• Fields are defined over “spaces”.
 – We will be considering 2D & 3D spaces.

• Defined by an origin and three vectors (or two vectors) that define orientation.
Scalar Fields

- Defined: associate a scalar with every point in space.
- What is a scalar?
 - A: a real number
- Examples:
 - Temperature
 - Density
 - Pressure

The temperature at 41.2324° N, 98.4160° W is 66F.

Fields are defined at every location in a space (example space: USA)
Vector Fields

• Defined: associate a vector with every point in space.
• What is a vector?
 – A: a direction and a magnitude
• Examples:
 – Velocity

Typically, 2D spaces have 2 components in their vector field, and 3D spaces have 3 components in their vector field.
Vector Fields

Representing dense data is hard and requires special techniques.
More fields (discussed later in course)

- Tensor fields
- Functions
- Volume fractions
- Multi-variate data
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
1. material made of a network of wire or thread.
 "mesh for fishing nets"
 synonyms: netting, net, network;
 More

2. an interlaced structure.
 "cell fragments that agglutinate and form intricate meshes"

verb

1. (of the teeth of a gearwheel) lock together or be engaged with another gearwheel.
 "one gear meshes with the input gear"
 synonyms: engage, connect, lock, interlock
 More

2. represent (a geometric object) as a set of finite elements for computational analysis or modeling.

What we want
An example mesh
An example mesh

Where is the data on this mesh?

(for today, it is at the vertices of the triangles)
An example mesh

Why do you think the triangles change size?
Anatomy of a computational mesh

- Meshes contain:
 - Cells
 - Points

- This mesh contains 3 cells and 13 vertices

- Pseudonyms:
 - Cell == Element == Zone
 - Point == Vertex == Node
Types of Meshes

- Curvilinear
- Adaptive Mesh Refinement
- Unstructured

We will discuss all of these mesh types more later in the course.
Rectilinear meshes

- Rectilinear meshes are easy and compact to specify:
 - Locations of X positions
 - Locations of Y positions
 - 3D: locations of Z positions
- Then: mesh vertices are at the cross product.
- Example:
 - X={0,1,2,3}
 - Y={2,3,5,6}
Rectilinear meshes aren’t just the easiest to deal with ... they are also very common.
Quiz Time

- A 3D rectilinear mesh has:
 - $X = \{1, 3, 5, 7, 9\}$
 - $Y = \{2, 3, 5, 7, 11, 13, 17\}$
 - $Z = \{1, 2, 3, 5, 8, 13, 21, 34, 55\}$

- How many points? $= 5 \times 7 \times 9 = 315$
- How many cells? $= 4 \times 6 \times 8 = 192$
Definition: dimensions

• A 3D rectilinear mesh has:
 – X = \{1, 3, 5, 7, 9\}
 – Y = \{2, 3, 5, 7, 11, 13, 17\}
 – Z = \{1, 2, 3, 5, 8, 13, 21, 34, 55\}

• Then its dimensions are 5x7x9
How to Index Points

- Motivation: many algorithms need to iterate over points.

```c
for (int i = 0 ; i < numPoints ; i++)
{
    double *pt = GetPoint(i);
    AnalyzePoint(pt);
}
```
Schemes for indexing points

Logical point indices

<table>
<thead>
<tr>
<th>0.5</th>
<th>1.5</th>
<th>2.5</th>
<th>3.5</th>
<th>4.5</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.4</td>
<td>2.4</td>
<td>3.4</td>
<td>4.4</td>
<td>5.4</td>
</tr>
<tr>
<td>0.3</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
<td>5.3</td>
</tr>
<tr>
<td>0.2</td>
<td>1.2</td>
<td>2.2</td>
<td>3.2</td>
<td>4.2</td>
<td>5.2</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1</td>
<td>2.1</td>
<td>3.1</td>
<td>4.1</td>
<td>5.1</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Point indices

<table>
<thead>
<tr>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

What would these indices be good for?
How to Index Points

• Problem description: define a bijective function, F, between two sets:
 – Set 1: \{(i,j,k): $0 \leq i < nX$, $0 \leq j < nY$, $0 \leq k < nZ$\}
 – Set 2: \{0, 1, ..., nPoints-1\}

• Set 1 is called “logical indices”
• Set 2 is called “point indices”

Note: for the rest of this presentation, we will focus on 2D rectilinear meshes.
How to Index Points

- Many possible conventions for indexing points and cells.
- Most common variants:
 - X-axis varies most quickly
 - X-axis varies most slowly
Bijective function for rectilinear meshes for this course

```c
int GetPoint(int i, int j, int nX, int nY)
{
    return j*nX + i;
}
```
Bijective function for rectilinear meshes for this course

```c
int *GetLogicalPointIndex(int point,
                          int nX, int nY)
{
  int rv[2];
  rv[0] = point % nX;
  rv[1] = (point/nX);
  return rv; // terrible code!!
}
```
int *GetLogicalPointIndex(int point,
 int nX, int nY)
{
 int rv[2];
 rv[0] = point % nX;
 rv[1] = (point/nX);
 return rv;
}
Quiz Time #2

• A mesh has dimensions 6x8.
• What is the point index for (3,7)? = 45
• What are the logical indices for point 37? = (1,6)

```c
int GetPoint(int i, int j,
             int nX, int nY)
{
    return j*nX + i;
}

int *GetLogicalPointIndex(int point,
                           int nX, int nY)
{
    int rv[2];
    rv[0] = point % nX;
    rv[1] = (point/nX);
    return rv; // terrible code!!
}
```
A vector field is defined on a mesh with dimensions 100x100

The vector field is defined with double precision data.

How many bytes to store this data?

\[= 100 \times 100 \times 2 \times 8 = 160,000 \]
Bijective function for rectilinear meshes for this course

```c
int GetCell(int i, int j, int nX, int nY)
{
    return j*(nX-1) + i;
}
```
Bijective function for rectilinear meshes for this course

```c
int *GetLogicalCellIndex(int cell, int nX, int nY)
{
    int rv[2];
    rv[0] = cell % (nX-1);
    rv[1] = (cell/(nX-1));
    return rv; // terrible code!!
}
```
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Linear Interpolation for Scalar Field F

Goal: have data at some points & want to interpolate data to any location
Linear Interpolation for Scalar Field F
Linear Interpolation for Scalar Field F

- General equation to interpolate:
 \[F(X) = F(A) + t \times (F(B) - F(A)) \]

- \(t \) is proportion of \(X \) between \(A \) and \(B \)
 \[t = \frac{(X - A)}{(B - A)} \]
Quiz Time #4

• F(3) = 5, F(6) = 11
• What is F(4)? = 5 + (4-3)/(6-3)*(11-5) = 7

• General equation to interpolate:
 – $F(X) = F(A) + t*(F(B)-F(A))$
• t is proportion of X between A and B
 – $t = (X-A)/(B-A)$
Bilinear interpolation for Scalar Field F

- $F(0,0) = 10$
- $F(1,0) = 5$
- $F(0,1) = 1$
- $F(1,1) = 6$

- $F(0.3, 0) = 8.5$
- $F(0.3, 1) = 2.5$
- $F(0.3, 0.4)$?

What is value of $F(0.3, 0.4)$?

- $F(0.3, 0.4) = 6.1$

General equation to interpolate:

$$F(X) = F(A) + t*(F(B)-F(A))$$
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Cell location

• Problem definition: you have a physical location (P). You want to identify which cell contains P.

• Solution: multiple approaches that incorporate spatial data structures.
 – Best data structure depends on nature of input data.
 • More on this later in the quarter.
Cell location for project 2

- Traverse X and Y arrays and find the logical cell index.
 - X={0, 0.05, 0.1, 0.15, 0.2, 0.25}
 - Y={0, 0.05, 0.1, 0.15, 0.2, 0.25}
- (Quiz) what cell contains (0.17, 0.08)?
 = (3,1)
Facts about cell (3,1)

• It’s cell index is 8.
• It contains points (3,1), (4,1), (3,2), and (4,2).
• Facts about point (3,1):
 – It’s location is (X[3], Y[1])
 – It’s point index is 9.
 – It’s scalar value is F(9).
• Similar facts for other points.
• → we have enough info to do bilinear interpolation
Outline

• Overview
• Fields
• Meshes
• Field interpolation
• Cell location
• Project #2
Project 2: Field evaluation

• Goal: for point P, find F(P)
• Strategy in a nut shell:
 – Find cell C that contains P
 – Find C’s 4 vertices, V0, V1, V2, and V3
 – Find F(V0), F(V1), F(V2), and F(V3)
 – Find locations of V0, V1, V2, and V3
 – Perform bilinear interpolation to location P
Project 2

• Assigned today, prompt online
• Due October 9th, midnight (→ October 10th, 6am)
• Worth 7% of your grade
• I provide:
 – Code skeleton online
 – Correct answers provided
• You send me:
 – source code
 – output from running your program
What’s in the code skeleton

- Implementations for:
 - GetNumberOfPoints
 - GetNumberOfCells
 - GetPointIndex
 - GetCellIndex
 - GetLogicalPointIndex
 - GetLogicalCellIndex

- “main”: set up mesh, call functions, create output
What’s not in the code skeleton

```cpp
// pt: a two-dimensional location
// dims: an array of size two.
// The first number is the size of the array in argument X,
// the second the size of Y.
// X: an array (size is specified by dims).
// This contains the X locations of a rectilinear mesh.
// Y: an array (size is specified by dims).
// This contains the Y locations of a rectilinear mesh.
// F: a scalar field defined on the mesh. Its size is dims[0]*dims[1].
float EvaluationFunction(const float *pt, const int *dims,
                         const float *X, const float *Y, const float *F)
{
    return 0; // IMPLEMENT ME!!
}
```

... and a few other functions you need to implement
Cell-centered data
Rayleigh Taylor Instability