Chapter 6

Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism:
Introduction

- Warehouse-scale computer (WSC)
 - Provide Internet services
 - Search, social networking, online maps, video sharing, online shopping, email, cloud computing, etc.
 - Provide Software as a Service (SaaS)
 - Millions of users, millions of independent requests
 - Threads rarely need to synchronize
 - Request-level parallelism (RLP)

- Differences with HPC “clusters”:
 - Clusters have higher performance processors and network
 - Clusters emphasize thread-level parallelism, WSCs emphasize request-level parallelism
Introduction

- Important design factors for WSC:
 - Cost-performance
 - Small savings add up
 - Energy efficiency
 - Affects power distribution and cooling
 - Work per joule
 - Dependability via redundancy
 - Network I/O
 - Interactive and batch processing workloads
 - Ample computational parallelism is not important
 - Most jobs are totally independent
 - “Request-level parallelism”
 - Operational costs count
 - Power consumption is a primary, not secondary, constraint when designing system
 - Scale and its opportunities and problems
 - Can afford to build customized systems since WSC require volume purchase
Prgrm’g Models and Workloads

- Batch processing framework: MapReduce
 - **Map**: applies a programmer-supplied function to each logical input record
 - Runs on thousands of computers
 - Provides new set of key-value pairs as intermediate values
 - **Reduce**: collapses values using another programmer-supplied function
Example:

- map (String key, String value):
 - // key: document name
 - // value: document contents
 - for each word w in value
 - EmitIntermediate(w,"1"); // Produce list of all words

- reduce (String key, Iterator values):
 - // key: a word
 - // value: a list of counts
 - int result = 0;
 - for each v in values:
 - result += ParseInt(v); // get integer from key-value pair
 - Emit(As[String(result)]);
Prgrm’g Models and Workloads

- MapReduce runtime environment schedules map and reduce task to WSC nodes
- Apache Hadoop is an open-source alternative
- Supports availability
 - Use replicas of data across different servers
- Scales with workload demands
 - Often vary considerably
Prgrm’g Models and Workloads
Computer Architecture of WSC

- WSC often use a hierarchy of networks for interconnection
- Each rack holds servers connected to a rack switch
- Rack switches are uplinked to switch higher in hierarchy
 - Goal is to maximize locality of communication relative to the rack
- Array switch connects an array of racks
 - Array switch should have at least 10X the bandwidth of rack switch
 - Cost of n-port switch grows as n^2
Computer Architecture of WSC

Array switch

Rack

switch

1U Server

Copyright © 2012, Elsevier Inc. All rights reserved.
Computer Architecture of WSC

![Diagram showing the architecture of WSC](image)

Key:
- CR = L3 core router
- AR = L3 access router
- S = Array switch
- LB = Load balancer
- A = Rack of 80 servers with rack switch
Storage

Storage options
- Use disks inside the servers, or
- Network attached storage through Infiniband
- WSCs generally rely on local disks
- Google File System (GFS) uses local disks and maintains at least three replicas
- Apache Hadoop uses a similar approach
WSC Memory Hierarchy

- Servers can access DRAM and disks on other servers using a NUMA-style interface

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Rack</th>
<th>Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM latency (μs)</td>
<td>0</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Disk latency (μs)</td>
<td>10,000</td>
<td>11,000</td>
<td>12,000</td>
</tr>
<tr>
<td>DRAM bandwidth (MB/sec)</td>
<td>20,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Disk bandwidth (MB/sec)</td>
<td>200</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>DRAM capacity (GB)</td>
<td>16</td>
<td>1,040</td>
<td>31,200</td>
</tr>
<tr>
<td>Disk capacity (GB)</td>
<td>2000</td>
<td>160,000</td>
<td>4,800,000</td>
</tr>
</tbody>
</table>
Infrastructure and Costs of WSC

- **Location of WSC**
 - Proximity to Internet backbones, electricity cost, property tax rates, low risk from earthquakes, floods, and hurricanes

- **Power distribution**
Infrastructure and Costs of WSC

- **Cooling**
 - Air conditioning used to cool server room
 - 64 F – 71 F
 - Keep temperature higher (closer to 71 F)
 - Cooling towers can also be used
 - Minimum temperature is “wet bulb temperature”
Infrastructure and Costs of WSC

- Cooling system also uses water (evaporation and spills)
 - E.g. 70,000 to 200,000 gallons per day for an 8 MW facility

- Power cost breakdown:
 - Chillers: 30-50% of the power used by the IT equipment
 - Air conditioning: 10-20% of the IT power, mostly due to fans

- How many servers can a WSC support?
 - Each server:
 - “Nameplate power rating” gives maximum power consumption
 - To get actual, measure power under actual workloads
 - Oversubscribe cumulative server power by 40%, but monitor power closely
Measuring Efficiency of a WSC

- **Power Utilization Effectiveness (PEU)**
 - $\text{PEU} = \frac{\text{Total facility power}}{\text{IT equipment power}}$
 - Median PUE on 2006 study was 1.69

- **Performance**
 - Latency is important metric because it is seen by users
 - Bing study: users will use search less as response time increases
 - Service Level Objectives (SLOs)/Service Level Agreements (SLAs)
 - E.g. 99% of requests be below 100 ms
Measuring Efficiency of a WSC
Google Servers

- Containers holding two rows of 29 racks each (58 racks)
- Each rack holds 20 servers (1160 total servers)
- Commodity hardware such as
 - Dual-core AMD Opteron processors (2.2 GHz)
 - Downclocked FSB (666 MHz -> 533 Mhz)
 - 8 GB DDR2 DRAM
 - 1 or 2 SATA disk drives
 - 160 watts peak, 85 watts idle
Google Servers
Google Servers
Google Servers
Cloud Computing

- Cheaper to rent computing time than to maintain servers (e.g., $0.10 per machine/hour)
- Uses virtual machines
 - Protects users from each other
 - Simplifies software distribution
 - Easily to control resource usage
 - Limited access to physical resources
 - Hide actual hardware details
- Amazon Web Services (AWS)
 - Simple Storage Service (S3)
 - Elastic Compute Cloud (EC2)
Fallacies

- Cloud computing providers are losing money.
- Capital costs for WSC are higher than for the servers that it houses.
- Given improvements in DRAM dependability and the fault tolerance of WSC systems software, you don’t need to spend extra for ECC memory in a WSC.
- Turning off hardware during periods of low activity improves cost-performance of a WSC.
- Replacing all disks with flash memory will improve cost-performance of a WSC.
Pitfalls

- Trying to save power with inactive low-power modes versus active low-power modes
- Using too wimpy a processor when trying to improve WSC cost-performance