Data Structures Lab

Learning to Prioritize
Assignment 3

- Due tomorrow night

- Focus on implementing a balanced search tree
 - Solving the diamond problem is secondary

- Make sure your files and methods are named correctly
 - BalancedTree.h, BalancedTree.cpp, assn3.cpp
 - insert, find, remove, print
Assignment 3 - Tips

- Build your tree incrementally
 - Start with a print method
 - Test each method as you write it

- Write insert and remove recursively
 - Makes balancing much easier

- Write rotation methods before balance method
 - Remember to test them

- I'll be in Descutes 100 today
 - But I'll be gone on Friday
 - If you have questions, ask early
Tracking Tree Height

● How do we know when our tree is out of balance?
 ○ Need to compute balance factor
 ○ Easy if you know subtree heights
 ○ But how do you compute them?

● How about a recursive solution?

```cpp
height(Node* curr) {
    h1 = height(curr → left)
    h2 = height(curr → right)
    return 1 + max(h1, h2)
}
```
Tracking Tree Height

- Recursively computing height takes $O(n)$
 - All operations should run in $O(\log n)$

- Seems like we're doing a lot of extra work
 - Let's keep track of height as we go
 - Only update when necessary

- Assume each node holds a height variable
 - Finding height is a $O(1)$ lookup
 - Can we update height in $O(1)$ as well?
Tracking Tree Height

- Let's update our recursive code

```cpp
height(Node* curr) {
    h1 = height(curr → left)
    h2 = height(curr → right)
    return 1 + max(h1, h2)
}
```
Let's update our recursive code:

```c
updateHeight(Node* curr) {
    h1 = curr → left → height;
    h2 = curr → right → height;
    curr → height = 1 + max(h1, h2)
}
```

What assumptions does this code make?
Tracking Tree Height

● Which nodes need to be updated?
 ○ Any node along an insert or delete path
 ○ Easy to access if we write insert/delete recursively

● At the end of each call to insert/delete:
 ○ Update the height of your node
 ○ Balance your node if necessary
Tracking Tree Height

Any issues here?

//node has two children
if (temp → left != NULL && temp → right != NULL){

 //find the in-order predecessor
 Node* & temp = getMax(curr->left);

 //swap up value and remove lower node
 curr → value = temp → value;
 remove(temp → value, temp);

 balance(curr); //balance on the way up
}

Tracking Tree Height

- Also need to update height after rotation
 - Which nodes need to be updated?
 - Does the order matter?
Assignment 3 - Questions
Keeping your priorities straight

- Binary Search Trees maintain tree order
 - Any element can be found in $O(\log n)$
 - But what if you only want specific elements?
 - Can we find them faster?

- Priority Queue
 - Allows easy access to (largest / smallest / best) node
 - Pushes important elements to the front

- Our PQs will prioritize small elements
 - But you could use any comparator
Throw it on the heap

- One PQ implementation is the min-heap
 - Binary Tree
 - Root is the smallest element of the tree
 - Root of each subtree is smallest element in the subtree

- Easy to access the smallest element
 - It's always at the root
 - O(1)

- Hard to access arbitrary elements
 - Heap ordering doesn't facilitate searching
Throw it on the heap

Diagram:
```
  3
 / \
8   6
 / \/ \\/
9  12 13
```
Throw it on the heap
Throw it on the heap
Throw it on the heap
Heap Insertion

- How do we insert into a heap?
 - Blindly insert at the bottom
 - Worry about ordering problems later

- Bubble-up
 - Compare new node against parent
 - If new node is larger, we're done
 - If new node is smaller, swap values and repeat

- Advantages
 - Smallest nodes rise to the top
 - Tree remains balanced
 - Fast insertion time
Heap Insertion
Heap Insertion
Heap Insertion
Heap Insertion
Heap Removal

- How do we remove the root of a heap?
 - Swap it with the bottom node
 - Delete that one instead
 - Worry about ordering problems later

- Bubble-down
 - Compare root against children
 - If root is smaller, we're down
 - Otherwise, swap root with smallest child and repeat

- Inverse of Bubble-up
Heap Removal

```
  2
 / \/
8   3
/ \  / \  
9  12 13 6
```
Heap Removal
Heap Removal

Diagram of a heap structure:

- Node 6
 - Node 8
 - Node 9
 - Node 12
 - Node 3
 - Node 13
Heap Removal

```
  3
 / \
8   6
|
9---12---13
```
Heap Removal
Heap Implementation

- Heap trees are always completely full
 - We can implement this with an array

- Replace pointer manipulation with array arithmetic
 - Kind of the same thing...

- More on that next week
Homework 4

- Will be posted later today
- Due March 9th
 - Two weeks from tomorrow
- Implement Huffman Compression algorithm
 - File compression algorithm
 - Makes good use of priority queues
Huffman Compression

● How do you represent text?

● 8-bit char encoding
 ○ A - 01000001
 ○ B - 01000010
 ○ ...
 ○ Y - 01011001
 ○ Z - 01011010

● Fixed length codes are easy to parse
 ○ 01000011 01001111 01010111
 ○ C O W

● How many bits necessary to encode an n char string?
Huffman Compression

● Can we encode smarter?

● Some characters appear more frequently than others
 ○ What if we assigned them shorter codes?
 ○ Give other characters longer codes

● Lots of short codes outweigh occasional longer codes
 ○ A - 1000 (4 bits)
 ○ B - 10110 (5 bits)
 ○ ...
 ○ Y - 100110101 (9 bits)
 ○ Z - 1100101101 (10 bits)

● How many bits to encode ABA? ZZZ?
Huffman Compression

● Variable length encodings are tricky

● Suppose we encode as follows
 ○ A = 0
 ○ B = 1
 ○ C = 10

● What does 10 mean?
 ○ BA?
 ○ C?

● Character codes must have unique prefixes
 ○ Encoding for C can't begin with encoding for B
Huffman Compression

- Represent character codes with a binary tree
 - Characters must be on leaves
 - No character code can be a prefix of another

A = 00
B = 01
C = 10
D = 11
Huffman Compression

- Suppose a is much more frequent than other characters...

A = 0
B = 100
C = 101
D = 11
Huffman Compression

● So how can we optimally assign codes?
 ○ (Assuming we know each character's frequency)

● Huffman's algorithm runs as follows:
 ○ Create a node for each character
 ○ Combine two nodes with smallest frequencies
 ○ Repeat until only one node remains

● Use the resulting tree to produce character codes
Huffman Compression

A (0.4) B (0.2) C (0.1) D (0.3)
Huffman Compression

A (0.4) B (0.2) C (0.1) D (0.3)
Huffman Compression
Huffman Compression
Huffman Compression
Huffman Compression
Huffman Compression

Diagram:

- (1.0)
 - A (0.4)
 - (0.6)
 - (0.3)
 - B (0.2)
 - C (0.1)
 - D (0.3)
Huffman Compression
Huffman Compression

- So where do priority queues come in?
 - We only ever care about the smallest nodes

- PQs make Huffman Compression very efficient
 - Insert all nodes into a PQ
 - Remove the root twice to get the two smallest nodes
 - Insert a new node with their combined probability
 - Repeat until all nodes are gone
Assignment 4 - Huffman Compression

● Implement a Priority Queue
 ○ Elements should be binary tree nodes
 ○ Initially unconnected

● Compute character frequencies
 ○ Read in a file
 ○ Count character occurrences

● Apply Huffman algorithm
 ○ Produce character tree
 ○ Translate into character codes

● Write an encoder/decoder