1. Provide solutions (using big-Oh or big-Theta) for the following recurrence relations.

 (a) \(T(n) = 8 T\left(\frac{n}{2}\right) + n^2 \)
 (b) \(T(n) = 25 T\left(\frac{n}{5}\right) + n^2 \)
 (c) \(T(n) = 5 T\left(\frac{n}{2}\right) + (n \log n)^2 \)
 (d) \(T(n) = 25 T\left(\frac{n}{5}\right) + n^{\log_5 30} \)

(Sol’n)

(a) Here \(f(n) = n^2 \) and \(n^{\log_a b} = n^{\log_2 8} = n^3 \). This is case 3 of the master method, so \(T(n) = \Theta(n^3) \).

(b) And here \(f(n) = n^2 \) and \(n^{\log_a b} = n^{\log_5 25} = n^2 \), so by case 2 \(T(n) = \Theta(n^2 \log n) \).

(c) \(f(n) = (n \log n)^2 \) and \(n^{\log_a b} = n^{\log_2 5} \), so by case 1 (noting that \(\log_2 5 > 2 \)), \(T(n) = \Theta(n^{\log_2 5}) \).

(d) \(f(n) = n^{\log_5 30} \) and \(n^{\log_a b} = n^{\log_5 25} = n^2 \), by case 3 (since obviously \(\log_5 30 > \log_5 25 \)) we get \(T(n) = \Theta(n^{\log_5 30}) \).

2. Into an initially empty AVL tree, insert the following values:

 1, 2, 3, 4, 5, 6, 7, 12, 11, 10.

3. Insert the values above into an initially empty 2-3-4 tree.

4. Determine the run-time of the following two segments of pseudo-code, using big-Oh notation.

 (a) for i=1 to n*n
 for j=1 to i*i
 sum++

 (b) for i=1 to n*n*n
 j=1
 while (j<i) {
 sum++
 j=3*j
 }

(Sol’n)
(a) Since \(i \) can get as large as \(n^2 \), the inner loop runs for as long as \((n^2)^2 = n^4 \) steps. The total is thus at most \(n^2 \cdot n^4 \) - in other words the runtime is \(O(n^6) \). (And in fact it is \(\Theta(n^6) \).)

(b) The inner loop uses time \(\Theta(\log_3 i) \). Since \(i \leq n^3 \), the total time is \(O(n^3 \log_3(n^3)) \). As has been mentioned, this simplifies to \(O(n^3 \log n) \).

\(\square \)

5. Given a BST \(T \) with \(n \) nodes, write a small piece of pseudo-code to determine the \textit{external} path length of \(T \). The children of each node are called \textit{lchild} and \textit{rchild}, and external nodes are indicated by \textit{null} pointers.

- Recall that the external path length \(E \) is the sum of the depths of all the external nodes.
- Think of a recursive routine that determines the depth of each node and modify it.
- Aim for \(O(n) \) time.

\((Sol'n) \)

\[
calcE(node \ p, \ int \ depth) \ returns \ int
\{
\begin{align*}
 & \text{if} \ (p==\text{null}) \ \text{then return depth} \\
 & \text{else} \\
 & \ \ \ \ \ return \ calcE(p.lchild, \ depth+1) + calcE(p.rchild, \ depth+1)
\end{align*}
\}
\]

The initial call should be \(\text{calcE}(T.root, \ 0) \). This is \(O(n) \) since it is essentially a postorder traversal.

\(\square \)