1. Provide solutions (using big-Oh or big-Theta) for the following recurrence relations.
 (a) \(t(n) = 7t\left(\frac{n}{5}\right) + n^2 \)
 (b) \(t(n) = 7t\left(\frac{n}{5}\right) + 313n \)
 (c) \(t(n) = 36t\left(\frac{n}{6}\right) + n^2 \)
 (d) \(t(n) = 27t\left(\frac{n}{3}\right) + n(\log n)^3 \)
 [8 points]

2. Into an initially empty AVL tree, insert the following values:
 1, 3, 25, 20, 35, 15, 12, 18, 5, 10, 29.
 [11 points]

3. Insert the values above into an initially empty 2-3-4 tree. [10 points]

4. What are the run-times of the following pieces of code?
 (a) for \(i = 1 \) to \(n*(\log n) \)
 for \(j = 1 \) to \(i \)
 \(\text{sum}++ \)
 (b) for \(i = 1 \) to \(n \)
 \(j = i \)
 while (\(j > 1 \)) {
 \(\text{sum} ++ \)
 \(j = j \div 2 \)
 }
 [8 points]

TURN THE PAGE OVER FOR QUESTION 5
5. Suppose we augment a BST by adding to each node a field called \textit{size}. So given a node \(p \),
the field \(p.size \) contains the number of nodes in the subtree of \(p \).

We want to use this field to efficiently implement a \textit{select} method. The idea is that \textit{select}(k,p)
will find the \(k \)th smallest value in the subtree of \(p \) for each integer \(k \) with \(1 \leq k \leq p.size \). Thus, \textit{select}(1, T.root) returns the smallest value in \(T \), \textit{select}(2, T.root) returns the 2nd smallest value stored in \(T \), and \textit{select}(T.root.size, T.root) returns the largest value in \(T \).

Imagine a tree \(T \) with the following characteristics at the top (let \(r = T.root \) be the root pointer):

\begin{itemize}
 \item \(r.size = 22 \) (the tree contains 22 values)
 \item \(r.left.size = 15 \) (the left subtree contains 15 values)
 \item \(r.right.size = 6 \) (the right subtree contains 6 values)
\end{itemize}

(a) If we execute \textit{select}(5, r), will the result be found in the left or right subtree of \(r \)? How about \textit{select}(18, r)? Or \textit{select}(16, r)?

(b) A call to \textit{select}(22, r) will find the result in the right subtree of \(r \). For what value of \(k \) will \textit{select}(k, r.right) return the same thing?

(c) Write a short procedure (maybe recursive) to find \textit{select}(k, p) whose run-time is bounded by the height of the tree.

[13 points]

Total: 50 points