Assignment 4

due Wednesday, February 15, 2012

1. Insert into an initially empty 2-3-4 tree, in the order given, the following values:

 12, 13, 17, 10, 4, 6, 9, 15, 30, 25, 20, 40.

 Show the intermediate steps after each insertion that causes a split. [6 points]

2. Insert the values above into an initially empty red-black tree. [6 points]

3. Let T and U be two (2,4)-trees storing n and m items, respectively, such that any item in T has a key less than the keys of all items in U. Describe an $O(\lg n + \lg m)$ method for joining the trees into a single tree that stores all the items in T and U. The original T and U may be destroyed in the process.

 • Give high-level pseudo-code for performing the join. You may use already existing find, insert, and delete routines.

 • Briefly explain why the time is $O(\lg n + \lg m)$.

 [8 points]

4. Let T be a tree storing 20,000 items. What is the worst case height of T in the following cases?

 (a) T is an AVL tree
 (b) T is a (2,4) tree
 (c) T is a red-black tree
 (d) T is a binary search tree

 [8 points]

Total: 28 points