1. Suppose that algorithm A uses $313 \cdot n^3$ operations while algorithm B uses $2 \cdot n^4$ operations. Determine the value N such that A is as fast or faster than B for all $n \geq N$. [4 points]

2. exercise 3.1-2, p 52 [4 points]

3. exercise 3.1-4, p 53. Additionally, is $2^{2n+1} = O(2^{2n})$? [5 points]

4. exercise 3-2, p 61. [8 points]

5. An algorithm takes 0.4ms for input size 50 (this allows you to determine the constant c, which will be different in each case). How large of an input can be solved in one hour if the run time of the algorithm is ... ?
 (a) $c n$
 (b) $c n \log n$
 (c) $c n^3$
 (d) $c 2^n$

[8 points]

6. What is the running time for the following code, which multiplies two $n \times n$ matrices A and B, storing the result in C? [4 points]

   ```java
   for i=1 to n
       for j=1 to n {
           C[i,j] = 0
           for k=1 to n
               C[i,j] = C[i,j] + A[i,k]*B[k,j]
       }
   ```

7. Determine the run times of the following two pieces of code, which do pretty much nothing. [6 points]

   ```java
   sum =0
   for i = 1 to n*n
       for j=1 to i*i*i
           sum ++
   ```

 and
sum =0
for i = 1 to n^2
 j=i
 while j>0
 sum++
 j = (j div 5)

Total: 39 points

Notes:

• For Q2, we are not asking you to do questions 1 and 2. Just question 2 of section 3.1. Also, assume that $a \geq 0$. Hint: $(n + a) \leq 2n$ when $n \geq a$.

• An ms is 1/1000 of a second, also called a millisecond.