EC Applications

- Systems Identification
- Economic Dispatch
- Time Series Artificial Neural Networks
- Circle Packing
- Hidden Markov Models

EC Applications

- Representation
- Domain Knowledge
- Fitness Function
- Constrained Optimization

Systems Identification

- Black-Box Identification
 - Identify model form
 - Identify model’s parameters
- Gray-Box Identification
 - Model form known
 - Identify model’s parameters
- Modelling for control

Systems Identification

- u – input, y – output,
 \[y(t) + a_n y(t-1) + \ldots + a_2 y(t-n) = b_n y(t-n) + b_1 y(t-n) + \ldots + b_1 y(t-n) + \varepsilon(t) \]
- Chromosome structure
 \[\theta = [a_1, a_2, \ldots, a_n, b_1, \ldots, b_n]^T \]
- Fitness function
 \[\text{error} = \sqrt{\frac{1}{N-1} \sum_{t=1}^{N} (y_t - \hat{y}_t)^2} \]

Systems Identification

- Typical control theory modelling tool: transfer functions
 \[A(q^{-1}) = 1 + a_1 q^{-1} + \ldots + a_n q^{-n} \]
 \[q^{-1} y(t) = y(t-1) \]
 \[B(q) = b_1 q^{-1} + \ldots + b_n q^{-n} \]
 \[G(q, \theta) = \frac{B(q)}{A(q)} \]
 \[H(q, \theta) = \frac{1}{A(q)} \]
Systems Identification

• $R_1 = 25.08 \, \text{k\Omega}$, $R_2 = 25.1 \, \text{k\Omega}$, $R_3 = 25.09 \, \text{k\Omega}$, $R_4 = 25.99 \, \text{k\Omega}$, $C_1 = 0.517 \, \mu\text{F}$, $C_2 = \mu\text{F}$, $C_3 = 0.485$, $C_4 = 0.55 \, \mu\text{F}$

• Real model

\[H(q) = \frac{29.75 \times 10^{-3}q^4 + 223.0 \times 10^{-5}q^2 + 154.9 \times 10^{-3}q + 9.418 \times 10^{-5}}{q^4 - 2.657q^2 + 2.565q^2 - 1.011q + 0.147} \]

Systems Identification

What did we get?

Systems Behaviors

Simulation

Identification

Economic Dispatch

• An electrical network
• n generators
• m loads
• How much does each generator should produce to minimize cost $= C$?

\[\begin{align*}
\min_{P} & \quad C = \sum_{i \in \Omega} c_i(P_i) \\
\text{subject to} & \quad \left(\sum_{i \in \Omega} P_i \right) - P_D - P_L = 0 \\
& \quad P_i^\text{min} \leq P_i \leq P_i^\text{max} \quad \forall i \in (\Omega) \\
& \quad c_i(P_i) = \alpha_{i,0} + \alpha_{i,1}P_i + \alpha_{i,2}P_i^2 + \cdots + \alpha_{i,n}P_i^n
\end{align*} \]

Economic Dispatch

• Chromosome design $\theta = [P_1, \ldots, P_n]$

• Fitness function $f = \sum P_i$

• How to stay in the constrained region?
Economic Dispatch

- Punish
- Repair
- Vector Combination
- DE
- PSO

Predictions

It is difficult to make predictions, especially about the future.

Neils Bohr

"The population is constant in size and will remain so right up to the end of mankind." J. Encyclopedia, 1756.

"1930 will be a splendid employment year," U.S. Department of Labor, New Year's Forecast in 1929, just before the market crash on October 29.

"Computers are multiplying at a rapid rate. By the turn of the century there will be 220,000 in the U.S." Wall Street Journal, 1966.

Time Series Forecasting

- What is the next value?
- The next k values?

\[
\hat{y}_t = \sum_{k=1}^{w} a_k y_{t-k} + \sum_{k=1}^{w} b_k e_{t-k} + e_t
\]

\[
e_t = \hat{y}_t - y_t
\]

Evolving ANN Models

- Input-output similar to AR
- Architecture of an Artificial Neural Network:
 - 3-Layer perceptron.
- ANN design using EC:
 - Architecture Design
 - Weight Design

Evolving ANNs
Evolving ANNs

- Chromosome of the outer evolutionary process

<table>
<thead>
<tr>
<th>Vars</th>
<th>NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1</td>
<td>1 0 1</td>
</tr>
</tbody>
</table>

- 0 indicates the variable is not taken into account
- 1 indicates the variable is taken into account
- NH - neurons in the hidden layer (binary-coded integer)

Evolving ANNs

- Chromosome of the inner evolutionary process.

- Vector of real numbers (weights of the synaptic connections)

Circle packing Problem - CPP

Given n circles $c_i, i \in \{1, \ldots, n\}$, find the diameter if the smallest containing circle c_0, such that all circles fit in the container circle without overlap.

CPP

- Container c_0, radius r_0
- c_i centered at (x_i, y_i) and radius r_i, $i \in \{1, \ldots, n\}$
- Determine the smallest radius r_0, coordinates (x, y) such that

\[
\sqrt{x^2 + y^2} \leq r_0 - r_i, \quad i \in N
\]
\[
\sqrt{(x_i - x)^2 + (y_i - y)^2} \geq r_i + r_j, \quad i \neq j \in N
\]

CPP

- Fixing the position of the n circles, we have a configuration
- $X=(x_1, y_1, x_2, y_2, \ldots, x_n, y_n)$
- If $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} < r_i + r_j$, c_i and c_j overlap
Chromosome = configuration

\((x_1, y_1, x_2, y_2, ..., x_n, y_n)\)

Random generation = overlaps

Individual with no overlaps + mutation = individual with overlaps

Parents with no overlaps + crossover = offspring with overlaps

Mutation produces overlaps

Xover produces overlaps
Search vs. Feasible Spaces

• Xover produces overlaps

Search vs. Feasible Spaces

• Constraint violations
• Punishment
• Repair

Search vs. Feasible Spaces

• Working in search space -> wasted work
• Solution: remain in feasible space
• Means: repair
Anomaly Detection (AD)

- Anomaly Detection is performed by detecting:
 - Behavior of the system
 - Resources utilization
 - Changes in the pattern
- A statistical model contains metrics derived from system operation ("normal" behavior)
- Any behavior that varies from this model is considered an anomaly

HMMs...

- An HMM is formed by a finite number of states connected by transitions
- HMMs can generate an observation sequence depending on its transitions, and probabilities

HMMs...

- An HMM λ is defined by the triplet:
 $\lambda = (A, B, \pi)$
 - π = Initial State Probability.
 - A = State Transition Probability Matrix.
 - B = Emission Probability Matrix.
- A Markov Model is hidden because we do not know which state led to each observation.

Evolutionary Programming (EP)

- Genetic Programming is a global search technique, that can be used to optimize the HMM parameters.

<table>
<thead>
<tr>
<th>Size</th>
<th>Transitions</th>
<th>Parameters</th>
<th>Π</th>
</tr>
</thead>
</table>

EP...

- The fitness value is calculated by the objective function:
 $P(O|\lambda) = \sum_{i=1}^{N} \alpha_i(i)$
- Forward probability: observation sequence had been generated by the HMM
Evolving HMMs

Results

• EP evolved HMMs based on the observation sequence given by the network bandwidth used in our University.

Results...

• We took the HMM with the highest probability
• We combined the HMM and a Time Window data to detect anomalies in our tests
• This two elements determine the probability of a given sequence had been generated by the HMM

Results...

• Our test consists of the following:
 • Given a time window data, the HMM analyzes it and determines the probability of the observation sequence.
 • The time window data moves to the next item in the observation sequence, which is also verified by the HMM.
 • The process continues until the whole observation sequence is traversed and tested.

Results...

• All probabilities generated by the sliding time windows and the HMM, were compared against a probability threshold
• We analyzed these probabilities and determine if an anomaly exists or not

Results...

<table>
<thead>
<tr>
<th>Window Size</th>
<th>Hits</th>
<th>False Positives</th>
<th>False Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>119</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

Probability Plot for Window Size 4
Conclusions

- Representation – not always straightforward
- Fitness Function – not always cheap
- Constrained Optimization
 - punishment vs. repair
 - wasting CPU cycles – getting nowhere
- Automated production of models