Evolution Strategies

- Developed by Rechenberg, Schwefel – 1970’s
- Real-valued problems
- Strong emphasis on mutation for creating offspring
- Mutation = addition of normal random noise
- Self-adaptation of (mutation) parameters

Evolution Strategies

<table>
<thead>
<tr>
<th>Representation</th>
<th>Real-valued vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>Discrete or intermediary</td>
</tr>
<tr>
<td>Mutation</td>
<td>Gaussian perturbation</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Uniform random</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>(μ, λ) or (μ+λ)</td>
</tr>
<tr>
<td>Specialty</td>
<td>Self-adaptation of mutation step sizes</td>
</tr>
</tbody>
</table>

Early Evolution Strategies

- Minimise \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)
- Algorithm: “two-membered ES” using
 - Chromosomes are \(\mathbb{R}^n \) Vectors
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

Early Evolution Strategies

BEGIN
set \(f = 0 \);
Create an initial point \(\{x_1, \ldots, x_n\} \in \mathbb{R}^n \);
REPEAT until (TERMINATION CONDITION is satisfied) DO
 draw \(z_i \) from a normal distr., for all \(i \in \{1, \ldots, n\} \) independently;
 \(y_i = x_i + z_i \), for all \(i \in \{1, \ldots, n\} \);
 IF \(f(y_i) \leq f(x_i) \) THEN
 \(y = y_i \);
 ELSE
 \(y = x_i \);
 FI
set \(f = f + 1 \);
END

Early Evolution Strategies

- \(z \) values drawn from normal distribution \(\mathcal{N}(0, \sigma) \)
 - \(\sigma \) is called mutation step size
- The ratio of successful mutations should be 1/5
- This rule resets \(\sigma \) after every k iterations by
 - \(\sigma = \sigma / c \) if \(p_s > 1/5 \)
 - \(\sigma = \sigma \) if \(p_s < 1/5 \)
 - \(\sigma = 1 \) if \(p_s = 1/5 \)
- where \(p_s \) is the \% of successful mutations, \(0.817 \leq c \leq 1 \)
Illustration of normal distribution

Representation

- Chromosomes consist of three parts:
 - Object variables: \(x_1, \ldots, x_n \)
 - Strategy parameters:
 - Mutation step sizes: \(\sigma_1, \ldots, \sigma_n \)
 - Rotation angles: \(\alpha_1, \ldots, \alpha_k \)
 - Covariance matrix \(\{ \sigma_1, \ldots, \sigma_n \} \)
- Angles not always present
- Full size: \(< x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_k > = x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_k > \)
 - where \(k = n(n-1)/2 \)

Mutation

- Main mechanism: changing value by adding random noise drawn from normal distribution
- \(x_i' = x_i + N(0, \sigma) \)
- Key idea:
 - \(\sigma \) is part of the chromosome \(< x_1, \ldots, x_n, \sigma > \)
 - \(\sigma \) is also mutated into \(\sigma' \)
 - Thus: mutation step size \(\sigma \) is coevolving with the solution \(x \)

Mutation

- Net mutation effect: \(< x, \sigma > \rightarrow < x', \sigma' > \)
- Order is important:
 - first \(\sigma \rightarrow \sigma' \)
 - then \(x \rightarrow x' = x + N(0, \sigma') \)
- new \(< x', \sigma' > \) is "evaluated" twice
 - First: \(x' \) is good if \(f(x') \) is good
 - Second: \(\sigma' \) is good if the \(x' \) it created is good
- Reversing mutation order: the \(\sigma \) that created \(x' \) would have disappeared

Mutation

- Coevolution of \(x \) and \(\sigma \)
- Evolution of \(\sigma \) can be seen in different dimensions:
 - Time: different \(\sigma \)s are needed at different times
 - Space: different \(\sigma \)s are needed at different locations

Mutation 1: one \(\sigma \)

- Chromosomes: \(< x_1, \ldots, x_n, \sigma > \)
- \(\sigma' = \sigma e^{\tau N(0,1)} \)
- \(x_i' = x_i + N(0, \sigma') \)
- Learning rate: \(\tau = \frac{1}{\sqrt{n}} \)
- Boundary rule \(\sigma < \varepsilon_0 \rightarrow \sigma = \varepsilon_0 \)
Mutation 1: one σ

- Circle: all components have same probability distribution

Mutation 2: n σ’s

- Chromosomes: $<x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n>$
- $\sigma_i' = \sigma_i e^{\tau N(0,1)} + \tau N(0,1)$
- $x_i' = x_i + \sigma_i' N_i(0,1)$
- Two learning rate parameters:
 - $\tau = \frac{1}{\sqrt{2\pi}}$
 - $\tau = \frac{1}{\sqrt{2\sqrt{\pi}}}$
- And $\sigma_i' < \epsilon \Rightarrow \sigma_i' = \epsilon$

Mutation case 3: Correlated mutations

- Chromosomes: $<x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n, \alpha_1, \ldots, \alpha_k>$
- where $k = n \cdot (n-1)/2$
- and the covariance matrix C is defined as:
 - $c_{ii} = \sigma_i^2$
 - $c_{ij} = 0$ if i and j are not correlated
 - $c_{ij} = \frac{\beta}{2} \cdot (\sigma_i^2 - \sigma_j^2) \cdot \tan(2\alpha_{ij})$ if $i \neq j$ are correlated

The mutation mechanism is then:

- $\sigma_i' = \sigma_i e^{\tau N(0,1)} + \tau N(0,1)$
- $\alpha_j' = \alpha_j + \beta \cdot N_j(0,1)$
- $x' = x + N(0,C')$ << multi-normal distribution
 - x stands for the vector $<x_1, \ldots, x_n>$
 - C' is the covariance matrix C after mutation of the σ values
- τ and τ' as before, $\beta = \frac{5}{4}$
- $\alpha_i' < \epsilon \Rightarrow \alpha_i' = \epsilon$
- $|\alpha_i'| > \epsilon \Rightarrow \alpha_i' = \epsilon \cdot \sign(\alpha_i')$, i.e., keep it in $[-\pi, \pi]$
Correlated mutations cont’d

Is it worth it?
Imagine the ridges in the Mexican Hat function (see Benchmarks.nb).
Is it not a good idea to be able to increase the probability to generate individuals along the ridge, while decreasing it on the slopes?

Recombination

• Creates one child
• Acts per variable / position:
 - Averaging parental values, or
 - Selecting one of the parental values
• From two or more parents:
 - Using two selected parents to make a child
 - Selecting two parents for each position anew

Names of Recombinations

<table>
<thead>
<tr>
<th>Two fixed parents</th>
<th>Two parents selected for each i</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_i = \frac{x_i + y_i}{2})</td>
<td>Local intermediary</td>
</tr>
<tr>
<td>(z_i) is (x_i) or (y_i), chosen randomly</td>
<td>Local discrete</td>
</tr>
</tbody>
</table>

Parent selection

• Parents are selected by uniform random distribution whenever an operator needs one/some
• Thus: ES parent selection is unbiased - every individual has the same probability to be selected
• Note that in ES “parent” means a population member (in GA’s: a population member selected to undergo variation)

Survivor Selection

• Applied after creating \(\lambda \) children from the \(\mu \) parents by mutation and recombination
• Deterministically chops off the “bad stuff”
• Basis of selection is either:
 - The set of children only: \((\mu, \lambda) \)-selection
 - The set of parents and children: \((\mu + \lambda) \)-selection

Survivor Selection

• \((\mu + \lambda) \)-selection is an elitist strategy
• \((\mu, \lambda) \)-selection can “forget”
• Often \((\mu, \lambda) \)-selection is preferred for:
 - Better at leaving local optima
 - Better at following moving optima
 - Using the + strategy bad \(\sigma \) values can survive in \(<x, \sigma> \) too long if their host \(x \) is very fit
Survivor Selection

- Selective pressure in ES is very high
 \((\lambda / \mu = 7\) recommended)
- ES: \(\mu = 15, \lambda = 100\)
 \[\tau = \frac{\ln \lambda}{\ln \mu} \approx \frac{\ln 100}{\ln 15} \approx 7\] takeover time
- GA: \(\mu = 15, \lambda = 100\)
 \[\tau = \lambda \ln \lambda = 100 \ln 100 = 460\]

Self-adaptation illustrated

- Given a dynamically changing fitness landscape
 (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum
 - adjust the mutation step size after every shift

Self-adaptation illustrated cont’d

Changes in the fitness values (left) and the mutation step sizes (right)

Prerequisites for self-adaptation

- \(\mu > 1\) to carry different strategies
- \(\lambda > \mu\) to generate offspring surplus
- Not “too” strong selection, e.g., \(\mu / \lambda = 7\)
- \((\mu, \lambda)\)-selection to get rid of misadapted \(\sigma\)'s
- Mixing strategy parameters by (intermediary) recombination on them

Exercise

- Download an EC framework
- See references in the course web page - choose the language of your preference.
- Using ES, minimize Ackley’s function, first for \(n=2\), then for \(n=30\).
- Compare your results with those mentioned in Eiben’s book.
- For the 2D case, trace the \(\sigma\)'s of the best individual of each generation; plot contour lines of the function, and the location of the best individual of each generation, drawn as an ellipse whose radii are proportional to its \(\sigma\)'s.