CIS 607 EC
Graduate Seminar on Evolutionary Computation

Programming Assignment 1
Genetic Algorithms

Due date: Oct. 16th, 2012
GA Implementation

• Implement Genetic Algorithms in your language of choice

• Implement variations, according to different directions

• Solve an example problem

• Perform experiments and compare results

• Report results
Example Problem
Double Pendulum Equilibrium

- Two uniform bars are connected by pins at A and B, and supported at A. Let a horizontal force P act at C.
- Given Force $P=2$, length of bars $l_1=l_2=2$, and bar weights $w_1=w_2=2$.
- Find the equilibrium configuration of the system (friction is neglected). That is, the values for angles, where $0 \leq \theta_1, \theta_2 \leq 90$.

Example Problem
Double Pendulum Equilibrium

Diagram with labeled points A, B, C, and P, with angles θ_1, θ_2, lengths l_1 and l_2, and weights W_1 and W_2. The diagram shows the system in equilibrium.
Example Problem
Double Pendulum Equilibrium

• The total potential for the pendulum is

\[\Pi = - P[(\ell_1 \sin \theta_1 + \ell_2 \sin \theta_2)] - (W_1 \ell_1 / 2)\cos \theta_1 - W_2 [((\ell_2 / 2) \cos \theta_2 + \ell_1 \cos \theta_1)] \]
Population Model

• Implement Generational GA
• Implement Steady State GA
Representation

• Implement fitness functions that understand the following representations:
 – Binary coded reals
 – Real numbers
Crossover

- Implement the following reproduction schemes:
 - One-point
 - N-point
 - Uniform
 - Multiple parents
Experiments

• Perform (30) independent runs for each version (combination of variants)

• Record performance
 – Time
 – No. Evaluations
 – Convergence (best individual of each generation) for best run

• Draw conclusions
Report

• Report:
 – implementation details
 – Experiment details
 – Results
 – Comparisons
 – Conclusions
• Write in journal/conference paper format
• Send to juan@cs.uoregon.edu by Oct. 16th
• May work on teams (0 < |team| <= 4)