CIS 471: Artificial Intelligence
Fall 2012

Reinforcement Learning

Daniel Lowd

Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Stuart Russell and/or Andrew Moore

Outline

- Today
 - Passive Learning
 - TD Updates
 - Q-value iteration
 - Q-learning
- Next time
 - Linear function approximation
What is it doing?

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards

Diagram:
- Agent
- Environment
- State s_t
- Reward r_t
- Action a_t
- Transition s_{t+1}
- Delay δ
- Discount γ
- Epsilon ϵ
- Learning Rate α
Reinforcement Learning

Reinforcement Learning
Reinforcement Learning

- **Reinforcement learning:**
 - Still have an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$
 - New twist: *don’t know T or R*
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…
- … but it’s tricky! (It’s also P3)
Passive Learning

- Simplified task
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - **Goal:** learn the state values (and maybe the model)
 - I.e., policy evaluation

- In this case:
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning!

Detour: Sampling Expectations

- Want to compute an expectation weighted by $P(x)$:

 $$E[f(x)] = \sum_x P(x) f(x)$$

- Model-based: estimate $P(x)$ from samples, compute expectation

 $$x_i \sim P(x)$$

 $$\hat{P}(x) = \text{count}(x)/k$$

 $$E[f(x)] \approx \sum_x \hat{P}(x) f(x)$$

- Model-free: estimate expectation directly from samples

 $$x_i \sim P(x)$$

 $$E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$$

- Why does this work? Because samples appear with the right frequencies!
Simple Case: Direct Estimation

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (1,3) right -1
 - (2,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,2) up -1
 - (3,3) right -1
 - (3,3) exit -100
 - (4,3) exit +100

 \[
 \begin{align*}
 \gamma &= 1, \ R = -1 \\
 V(2,3) &\sim (96 + -103) / 2 = -3.5 \\
 V(3,3) &\sim (99 + 97 + -102) / 3 = 31.3
 \end{align*}
 \]

Review: Model-Based Policy Evaluation

- **Simplified Bellman updates to calculate V for a fixed policy:**
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V_0^\pi(s) = 0
\]

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]
Model-Based Learning

- Idea:
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- Empirical model learning
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of $T(s,a,s')$
 - Discover $R(s,a,s')$ the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

Example: Model-Based Learning

- Episodes:
 - $(1,1)$ up -1
 - $(1,2)$ up -1
 - $(1,2)$ up -1
 - $(1,3)$ right -1
 - $(1,3)$ right -1
 - $(2,3)$ right -1
 - $(2,3)$ right -1
 - $(3,3)$ right -1
 - $(3,3)$ right -1
 - $(3,2)$ up -1
 - $(3,2)$ up -1
 - $(4,2)$ exit -100
 - $(3,3)$ right -1
 - $(4,3)$ exit +100
 - (done)

$T(<3,3>, \text{right, <4,3>}) = 1 / 3$

$T(<2,3>, \text{right, <3,3>}) = 2 / 2$
Sample Avg to Replace Expectation?

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- Who needs T and R? Approximate the expectation with samples (drawn from T!)

\[\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_i^\pi(s'_1) \]
\[\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_i^\pi(s'_2) \]
\[\vdots \]
\[\text{sample}_k = R(s, \pi(s), s'_k) + \gamma V_i^\pi(s'_k) \]

\[V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_i \text{sample}_i \]

Temporal Difference Learning

\[V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

- Big idea: learn from every experience
 - Update V each time we experience a transition
 - Likely s' will contribute updates more often
- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

\[\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s') \]
\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample} \]
\[V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s)) \]
Exponential Moving Average

- Exponential moving average
 - The running update:
 \[
 \bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n
 \]
 - Makes recent samples more important
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
 - Forgets about the past (distant past values were wrong anyway)
 - Easy to compute from the running average
 - Decreasing learning rate can give converging averages

TD Policy Evaluation

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]
\]

```
(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,3) right -1
(3,2) up -1
(3,2) up -1
(4,2) exit -100
(4,3) exit +100
```

Updates for \(V(<3,3>)\):

- \(V(<3,3>) = 0.5 \cdot 0 + 0.5 \cdot [-1 + 1 \cdot 0] = -0.5\)
- \(V(<3,3>) = 0.5 \cdot -0.5 + 0.5 \cdot [-1 + 1 \cdot 100] = 49.475\)
- \(V(<3,3>) = 0.5 \cdot 49.475 + 0.5 \cdot [-1 + 1 \cdot -0.75]\)

\(\gamma = 1, \alpha = 0.5, V_0(<4,3>) = 100, V_0(<4,2>) = -100, V_0 = 0 \text{ otherwise}\)
Problems with TD Value Learning

- TD value learning is model-free for policy evaluation (passive learning)

- However, if we want to turn our value estimates into a policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active Reinforcement Learning

- Full reinforcement learning
 - You don’t know the transitions T(s,a,s’)
 - You don’t know the rewards R(s,a,s’)
 - You can choose any actions you like
 - Goal: learn the optimal policy
 - … what value iteration did!

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right] \]

Q-Learning Update

- Q-Learning: sample-based Q-value iteration
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] \]

- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 \[\text{sample} = R(s,a,s') + \gamma \max_{a'} Q(s',a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \text{[sample]} \]
Q-Learning: Fixed Policy

- Several schemes for action selection
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability $1-\varepsilon$, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration / Exploitation
Q-Learning: ε Greedy

Exploration Functions

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)
 - Exploration policy $\pi(s') =$

 $$\max_{a'} Q_i(s', a') \quad \text{vs.} \quad \max_{a'} f(Q_i(s', a'), N(s', a'))$$
Q-Learning Final Solution

- Q-learning produces tables of q-values:

![Q-values table]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Not too sensitive to how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about related states and their q values:

- Or even this third one!
Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - …… etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[
 V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
 \]
 \[
 Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
 \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:

 \[\text{transition} = (s, a, r, s') \]

 \[\text{difference} = [r + \gamma \max_{a'} Q(s', a')] - Q(s, a) \]

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \]

 \[w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features
 - Formal justification: online least squares

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]

\[R(s, a, s') = -500 \]

\[\text{correction} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Linear Regression

\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction

\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]

Ordinary Least Squares (OLS)

\[\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2 \]

Observation

Error or “residual”
Minimizing Error

Imagine we had only one point \(x \) with features \(f(x) \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

\[
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

Approximate q update:

"target" "prediction"

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

Overfitting

Degree 15 polynomial
Which Algorithm?
Q-learning, no features, 50 learning trials:

Which Algorithm?
Q-learning, no features, 1000 learning trials:
Which Algorithm?

Q-learning, simple features, 50 learning trials:

![Pacman Game](image1)

SCORE: 0

Policy Search*

![Policy Search Image](image2)
Policy Search*

- Problem: often the feature-based policies that work well aren't the ones that approximate V/Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search*

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (details in the book, optional material)
 - Take uphill steps, recalculate derivatives, etc.